辽宁燃料电池整车原理软件教学系统方案

时间:2023年09月16日 来源:

氢泄漏报警分为四类,其一是氢浓度传感器故障,另外三类是三级泄露报警,按照氢泄露浓度不同依次为轻度报警、中度报警和紧急报警。轻度报警又称一级泄露报警,指空气中的氢含量在0.4%到1%之间,氢系统控制器将轻度氢气泄露报警信息上报燃料电池控制器系统和整车控制系统,并提示驾驶员有氢泄露异常;中度报警又称二级泄露报警,指空气中的氢含量在1%到2%之间,氢系统控制器将向燃料电池控制器系统和整车控制系统上报严重的氢气泄露报警,并提示驾驶员立即停车;紧急泄露报警又称三级泄露报警,指空气中的氢含量超过2%时,氢系统控制器向燃料电池控制器系统和整车控制系统上报紧急泄漏报警,同时进入故障处理模式,立即关闭氢瓶上的电磁阀,并声光报警提示司机氢气泄露。在实训台里,学生可以使用控制电气控制和监测氢气流量、压力和温度。辽宁燃料电池整车原理软件教学系统方案

辽宁燃料电池整车原理软件教学系统方案,氢能实训平台

燃料电池汽车的燃料是氢气,由于氢气本身的特性,使得燃料电池汽车氢系统的安全性成为人们首先关心的问题,因此,为了燃料电池汽车的推广和使用,有必要对燃料电池汽车的氢系统安全性进行研究。氢特性及燃料电池氢系统概述:在常温常压下,氢气是一种无色无味无毒的气体。从氢安全的角度考虑,其具有以下特点:(1)易燃性:氢气是一种极易燃的气体,燃点只有574℃,同时氢气和空气混合时可燃范围非常广,使得氢气很容易快速点燃,又由于氢气密度低,因此氢气燃烧后火焰上升也很快;(2)炸裂性:氢气)炸裂的体积分数在4~75%之间,相比甲烷的5~15%,其炸裂极限体积分数的范围很宽,为了避免)炸裂,需将氢气浓度控制在 4%以下,通常的做法是使用氢浓度传感器实时监控,并在必要的时候使用风扇排风降低浓度。辽宁燃料电池整车原理软件教学系统方案实训台同样采用蓝牙传输技术,可以方便地下载各种氢气管理文件和信息。

辽宁燃料电池整车原理软件教学系统方案,氢能实训平台

现在应用较为普遍的新能源汽车教学实训设备中的汽车燃料电池氢的气系统示教板,汽车燃料系统示教板也是运用相关技术研发的,他们都是新能源汽车教学设备的重要组成部分,可以为各类院校对汽车燃料电池进行研发和培训使用。汽车燃料电池系统实训台发电系统控制单元是整个实验装置的关键部分,通过控制燃料电池堆的温度、氢气压力、空气风量和尾气排放,实现燃料电池发电系统的热管理和水管理。针对不同负载,可研究恒电流、恒电压、恒功率、恒电 阻等多种方式下的电堆特性,绘制相应的特性曲线。 通过调整和优化控制变量,确定操作条件,获得系统输出性能。针对不同类型电堆,通过比较电堆特性曲线,评价电堆性能。

室内外架空或埋地敷设的氢气管道和汇流排及其连接的法兰间宜互相跨接和接地。氢气设备与管道上的法兰间的跨接电阻应小于 0.03 Q。 与氢气相关的所有电气设备应有防静电接地装置,应定期检测接地电阻,每年至少检测一次。 根据GB 50177一2005 及SY/T 0019,氢气管道的施工及验收符合下列规定∶a) 接触氢气的表面彻底去除毛刺、焊渣、铁锈和污垢等;b) 碳钢管的焊接宜采用氩弧焊作底焊;不锈钢应采用氩弧焊;c) 氢气管道、阀门、管件等在安装过程中及安装后采用严格措施防止焊渣、铁锈及可燃物等进入或遗留在管内;d) 氢气管道的试验介质和试验压力符合GB50177一2005表12.0.14的规定;氢气管道强度试验合格后,使用不含油的空气或惰性气体,以不小于20 m/s的流速进行吹扫,直至出口无铁锈、无尘土及其他污垢为合格。氢能实训平台可以提供实际的氢能实验操作视频,让学生能够更好地理解氢能技术的操作流程。

辽宁燃料电池整车原理软件教学系统方案,氢能实训平台

汽车燃料电池(氢气)系统示教板可展示汽车燃料电池(氢气)系统,可动态模拟燃料电池(氢气)系统的工作过程,安装发光二极管进行系统流向的动态指示。汽车燃料电池系统示教板主要用途1.适用于各类型院校及培训机构对汽车燃料电池(氢气)系统系统理论和维修实训的实训教学需要。2.适用于各类型院校及培训机构对汽车燃料电池(氢气)系统模块单元教学需要。3.适用于汽车职业技能鉴定考核的需要。4.适用于汽车燃料电池(氢气)系统模块的结构与原理认知、功能动态演示、故障模拟与考核、故障检测与维修、故障诊断与排除等教学需要。压力/流量控制单元支持用户调节氢气压力和流量,并支持远程操作模式。青岛燃料电池整车原理演示系统

实训台采用先进的无线网络技术与物联网的技术,实现实时全方面的氢气管理。辽宁燃料电池整车原理软件教学系统方案

燃料电池发电系统控制单元是整个实验装置的关键部分,通过控制燃料电池堆的温度、氢气压力、空气风量和尾气排放,实现燃料电池发电系统的热管理和水管理。针对不同负载,可研究恒电流、恒电压、恒功率、恒电 阻等多种方式下的电堆特性,绘制相应的特性曲线。通过调整和优化控制变量,确定较优操作条件,获得较佳的系统输出性能。针对不同类型电堆,通过比较电堆特性曲线,评价电堆性能。燃料电池发电系统的热管理和水管理:针对风冷型燃料电池堆,通过调节风扇电压,改变风扇转速,控制电堆温度;针对水冷型燃料电池堆,通过调节循环水泵电压,改变冷却水流量,控制电堆温度,实现电堆的热管理。设定电磁阀开闭周期和占空比,调节尾气排放量,控制电堆内部湿度,实现电堆水管理。辽宁燃料电池整车原理软件教学系统方案

信息来源于互联网 本站不为信息真实性负责