青岛燃料电池发动机系统企业

时间:2023年09月17日 来源:

氢燃料在车辆驱动能源方面的应用,起始于把氢燃料电池用作电动车电源。近代的氢燃料电动车的某些性能可满足使用要求,如戴克公司的使用 Mark 900 氢燃料电池的NECAR5 电动车,其电动机输出功率可达 75 k W,较高时速可达 150 km⋅h。但电动车不可能完全取代汽车,主要是因为电池的寿命远短于发动机寿命,而且电动车的较大连续行驶里程受到配备电池数量的限制,一般,电动车装用近百公斤的电池,较大续行驶里程也只 200 km 左右。尤其是对于数量巨大的在用汽车,不可能将其发动机全报废而改用电动机驱动。因此近代专业人员一直致力于将氢气直接作为发动机燃料的研究,一方面适合发动机能源、排放等方面的要求,另一方面又满足汽车连续行驶里程及能利用在用的发动机。氢气存储稳定性较高,是储存可再生能源的有效手段之一。青岛燃料电池发动机系统企业

青岛燃料电池发动机系统企业,氢能技术服务

考虑到燃料电池发动机自身的特点结合常用的可靠性评价指标,选定平均初次故障时间、平均故障间隔时间和平均修复时间三个指标。(1)、平均初次故障时间,燃料电池发动机在初次故障前所运行的时间的平均值,单位为h。(2)、平均故障间隔时间,燃料电池发动机发生相邻两次故障之间所运行时间的平均值,单位为h。(3)、平均修复时间,燃料电池发动机修复故障所用时间的平均值,单位为h。质子交换膜燃料在平稳工作时寿命可以高达到100000h,但是在汽车应用中,往往无法达到上述期望值。燃料电池汽车耐久性主要受燃料电池性能衰退和寿命极限影响。燃料电池发动机寿命,以额定功率输出衰减到原来的90%的工作时间来评价,单位为h。广州氢能源实训室建设收费氢能技术需要建设氢能基础设施,包括氢气生产、储存、运输和加注等环节。

青岛燃料电池发动机系统企业,氢能技术服务

氢燃料电池系统是燃料电池汽车的“关键”,是一种将氢气与氧气通过电化学反应产生电能的零污染环保能量转化装置,其过程不涉及燃烧,无机械损耗,能量转换率高,产物只为电、水和热,零污染,低噪音。 该系统包括燃料供应子系统、空气供应子系统、水热管理子系统及监测与控制子系统等,主要系统部件包括:空气压缩机、增湿器、氢气循环泵/引射器、冷却散热器、系统控制器、单片巡检仪等。根据氢燃料电池系统输入输出要求以及系统设备特征,该系列燃料电池发动机系统实现了系统结构创新设计,完成了系统高度集成和较佳优化匹配。各项性能指标达到国内水平,并已通过国家检测中心的强制检测,已开展实际装车应用。适用于中重型卡车、城市和公路客车、特种车、乘用车等各类车型及各类船舶、农用机械、工程设备等领域。

而燃料电池是将“燃料”和“氧气”进行“电化学反应”将化学能先转化为电能,再通过电能驱动车辆。同样都是利用“燃料”和“氧化剂”进行反应但两者有着本质的区别,在内燃机的燃烧反应中电子的运动是无序的,大量的化学能被转化为热能消耗掉了(内燃机的效率约25%)。而在燃料电池的电化学反应中电子是有序移动的(燃料电池的效率可达60%以上),后者的能量利用率更高。自古以来人类利用能源始终是从无序到有序,从不可控到可控的过程,所以若从宏观的角度思考燃料电池代替内燃机应该是一种趋势。除了广为人知的氢以外,甲醇、天然气、煤气都可以成为燃料电池所需的“燃料”,但氢燃料能量密度高、排放清洁性好,依然是较主要的发展方向。氢能技术与传统的化石燃料使用不同,其排放的废气只为水蒸气。

青岛燃料电池发动机系统企业,氢能技术服务

燃料电池发动机在额定功率输出时,净输出功率与进入燃料电池堆的燃料热值(低热值)之比?该指标为较常用的衡量经济性的指标。燃料电池发动机在怠速状态下单位时间的氢消耗量,单位为g/s?燃料电池汽车工况复杂多变,而怠速是汽车经常遇见的情况。尽管在混合动力系统中,燃料电池系统怠速与车辆的怠速并不同时出现,而且通过优化系统配置和控制策略可以大幅减少怠速时间,但是怠速工况仍然会出现。有效氢利用率是燃料电池发动机在正常工作条件下,由燃料电池堆通过电化学反应转换为水的氢气占总共所加注氢气的质量百分比。有效氢利用率通常小于100%,主要是由于阳极排放造成的?提高有效氢利用率,不但有利于提高燃料经济性,而且也有助于减少排氢。氢能技术的推广需要大规模的投资和政策支持,以促进其发展和普及。南京氢能技术服务标准

氢气发电和热能利用可以大幅降低能源消耗和环境污染。青岛燃料电池发动机系统企业

噪声是指发声体做无规则振动时发出的声音,影响他人的声音都是噪声。虽然燃料电池发动机产生的噪声同传统内燃机噪声相比有了很大改善,但是燃料电池系统产生的噪声也不容忽视。燃料电池发动机的主要噪声来源于空气子系统和氢气子系统,此外还有其他固定部件振动产生的噪声,燃料电池系统中空气子系统中的空压机和氢气子系统中的电控喷氢阀、氢气循环泵是噪声的主要来源。空压机的主要噪声来源有:①、空压机压缩空气过程中产生的空气动力噪声。②、高流速空气进气口以及排气口的涡流噪声。③、空气压缩机的振动产生的噪声。针对空气子系统的噪声来源,处理措施包括:优化主噪声源的零部件的悬挂位置及结构(如空压机);调整进气系统和其他产生噪声零部件的位置,优化空气管路结构,减少气体涡流的形成;在进排气口加装消声器、在噪声源外加隔声材料等。青岛燃料电池发动机系统企业

信息来源于互联网 本站不为信息真实性负责