马鞍山纳米涂层真空镀膜

时间:2024年04月22日 来源:

真空镀膜:物理的气相沉积技术是指在真空条件下采用物理方法将材料源(固体或液体)表面气化成气态原子或分子,或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术,物理的气相沉积是主要的表面处理技术之一。PVD(物理的气相沉积)镀膜技术主要分为三类:真空蒸发镀膜、真空溅射镀膜和真空离子镀膜。物理的气相沉积的主要方法有:真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜和分子束外延等。相应的真空镀膜设备包括真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机。真空溅射是彻底的环保制程,一定环保无污染。马鞍山纳米涂层真空镀膜

马鞍山纳米涂层真空镀膜,真空镀膜

真空镀膜技术:物理的气相沉积技术由于其工艺处理温度可控制在500℃以下,因此可作为较终的处理工艺用于高速钢和硬质合金类的薄膜刀具上。采用物理的气相沉积工艺可大幅度提高刀具的切削性能,人们在竞相开发高性能、高可靠性设备的同时,也对其应用领域的扩展,尤其是在高速钢、硬质合金和陶瓷类刀具中的应用进行了更加深入的研究。化学气相沉积技术是把含有构成薄膜元素的单质气体或化合物供给基体,借助气相作用或基体表面上的化学反应,在基体上制出金属或化合物薄膜的方法,主要包括常压化学气相沉积、低压化学气相沉积和兼有CVD和PVD两者特点的等离子化学气相沉积等。镇江真空镀膜加工在真空中把金属、合金或化合物进行蒸发或溅射,使其在被涂覆的物体上凝固并沉积的方法,称为真空镀膜。

马鞍山纳米涂层真空镀膜,真空镀膜

真空镀膜的方法:真空蒸镀法:电子束蒸发源利用灯丝发射的热电子,经加速阳极加速,获得动能轰击处于阳极的蒸发材料,是蒸发材料加热气化,实现蒸发镀膜。这种技术相对于蒸发镀膜,可以制作高熔点和高纯的薄膜,是高真空镀钛膜技术中是一种新颖的蒸镀材料的热源。高频感应蒸发源是利用蒸发材料在高频电磁场的感应下产生强大的涡流损失和磁滞损失,从而将镀料金属蒸发的蒸镀技术。这种技术比电子束蒸发源蒸发速率更大,且蒸发源的温度均匀稳定。

真空镀膜:真空涂层技术的发展:真空涂层技术起步时间不长,国际上在上世纪六十年代才出现将CVD(化学气相沉积)技术应用于硬质合金刀具上。由于该技术需在高温下进行(工艺温度高于1000ºC),涂层种类单一,局限性很大,起初并未得到推广。到了上世纪七十年代末,开始出现PVD(物理的气相沉积)技术,之后在短短的二、三十年间PVD涂层技术得到迅猛发展,究其原因:其在真空密封的腔体内成膜,几乎无任何环境污染问题,有利于环保;其能得到光亮、华贵的表面,在颜色上,成熟的有七彩色、银色、透明色、金黄色、黑色、以及由金黄色到黑色之间的任何一种颜色,能够满足装饰性的各种需要;可以轻松得到其他方法难以获得的高硬度、高耐磨性的陶瓷涂层、复合涂层,应用在工装、模具上面,可以使寿命成倍提高,较好地实现了低成本、收益的效果;此外,PVD涂层技术具有低温、高能两个特点,几乎可以在任何基材上成膜,因此,应用范围十分广阔,其发展神速也就不足为奇。电子束蒸发是真空镀膜技术的一种。

马鞍山纳米涂层真空镀膜,真空镀膜

通过PVD制备的薄膜通常存在应力问题,不同材料与衬底间可能存在压应力或张应力,在多层膜结构中可能同时存在多种形式的应力。薄膜应力的起源是薄膜生长过程中的某种结构不完整性(杂质、空位、晶粒边界、错位等)、表面能态的存在、薄膜与基底界面间的晶格错配等.对于薄膜应力主要有以下原因:1.薄膜生长初始阶段,薄膜面和界面的表面张力的共同作用;2.沉积过程中膜面温度远高于衬底温度产生热应变;3.薄膜和衬底间点阵错配而产生界面应力;4.金属膜氧化后氧化物原子体积增大产生压应力;5.斜入射造成各向异性成核、生长;6.薄膜内产生相变或化学组分改变导致原子体积变化 各种真空镀膜技术都需要有一个蒸发源或靶子。湛江真空镀膜厂家

真空镀膜离子镀中不同的蒸发源与不同的电离或激发方式可以有多种不同的组合。马鞍山纳米涂层真空镀膜

在二极溅射中增加一个平行于靶表面的封闭磁场,借助于靶表面上形成的正交电磁场,把二次电子束缚在靶表面特定区域来增强电离效率,增加离子密度和能量,从而实现高速率溅射的过程。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。马鞍山纳米涂层真空镀膜

信息来源于互联网 本站不为信息真实性负责