宜兴正规协同系统

时间:2021年05月14日 来源:

    所述uwb定位数据由指定区域内的uwb定位基站获取自所述指定区域内的车载定位标签后发送至所述服务器;车辆位置信息更新单元,用于根据所述uwb定位数据,更新所述指定区域的车辆位置信息;广播消息生产单元,用于根据更新后的所述车辆位置信息,生成广播消息;短程广播单元,用于对所述广播消息进行短程广播,以供同在所述指定区域内的车载设备基于所述广播消息执行相应的车路协同工作策略。在本发明上述实施例中,可选地,所述车辆位置信息包括所述uwb定位数据和车辆实时状态信息,则所述车辆位置信息更新单元包括:判断单元,用于根据所述uwb定位数据所属的车辆的个体信息,判断是否存储有对应的历史uwb定位数据;执行单元,用于基于存储有所述历史uwb定位数据的情况,根据实时的所述uwb定位数据和所述历史uwb定位数据,计算所述车辆的所述车辆实时状态信息;第二执行单元,用于基于未存储有所述历史uwb定位数据的情况,将所述uwb定位数据新增为所述车辆的所述车辆位置信息。在本发明上述实施例中,可选地,所述广播消息生产单元包括:提示信息生成单元,用于通过预定的车路协同算法对更新后的所述车辆位置信息进行处理,得到车路协同提示信息;广播消息转换单元。协同系统费用哪家好,诚心推荐无锡功恒精密。宜兴正规协同系统

    前方故障车辆或事故车辆)上安装有v2x通信模块20,通过v2x通信模块20可以采集车辆的第二数据信息,第二数据信息主要包括车辆的方向信息、位置信息和制动信息等,数据融合处理模块30可以将采集到的数据信息和第二数据信息进行融合处理,得到车辆信息。通过融合处理后的车辆信息可以有效消除信息传递盲区,使驾驶员更好的做出驾驶决策,降低连环事故发生率。本发明的基于v2x的车路协同方法,根据车辆的车辆摄像头、毫米波雷达和激光雷达采集的图像信息和距离信息,以及v2x通信模块20采集的车辆的方向信息、位置信息和制动信息,进行车队协同式紧急制动,提升交通安全,使交通效率更加高效。远程信息处理模块50(t-box)可以将车辆信息上传至云端40,并实时共享给后方车辆。车辆信息采用5g网络上传至云端40,并由云端40通过5g网络实时共享给后方车辆,提高车辆信息的上传和共享速度。后,后方车辆根据车辆信息协同完成驾驶决策,具体地,后方车辆根据车辆信息协同完成的驾驶决策包括紧急制动,保证后方车辆依次停车,避免发生碰撞,提升交通安全,是交通效率更加高效。本发明的基于v2x的车路协同系统,主要针对高速公路驾驶场景,面对前方车辆突发交通事故或车辆故障时。四川官方协同系统销售智能制造生产厂家哪家好,诚心推荐无锡功恒精密。

    再由服务器将车辆位置信息转发至该指定区域内的路侧设备。步骤204,根据所述uwb定位数据所属的车辆的个体信息,判断是否存储有对应的历史uwb定位数据,在判断结果为是时,进入步骤206,在判断结果为否时,进入步骤208。指定区域内每个车辆的位置数据与车辆的个体信息关联存储在uwb定位数据中,车辆的个体信息包括但不限于车辆id、等能够识别车辆身份的信息。判断是否存储有某一车辆的历史uwb定位数据,则可在路侧设备端检测已存储的历史uwb定位数据中是否具有该车辆的个体信息,若路侧设备端具有该车辆的个体信息,则存储有该车辆对应的历史uwb定位数据。反之,若路侧设备端不具有该车辆的个体信息,则未存储有该车辆对应的历史uwb定位数据。步骤206,根据实时的所述uwb定位数据和所述历史uwb定位数据,计算所述车辆的所述车辆实时状态信息,以及将所述uwb定位数据和所述车辆实时状态信息确定为更新后的车辆位置信息。车辆的车辆实时状态信息包括车辆的朝向和速度,基于存储有所述历史uwb定位数据的情况,车辆的车辆实时状态信息可由车辆实时的uwb定位数据和历史uwb定位数据计算得到。具体来说,本发明的技术方案为周期性执行,即每隔预定时间间隔进行一次检测。

    δicm1pm_t5表示在t5时刻电机组一c相电流传感器与电机群直流母线电流传感器测量电流值在增益误差比例系数下的差值,δicm1pm_t2表示在t2时刻电机组一c相电流传感器与电机群直流母线电流传感器测量电流值在增益误差比例系数下的差值;利用公式(6),终得到电机组一a、b、c相电流传感器与电机群直流母线电流传感器的偏置误差如公式(7)所示:由此终消除电机子系统1的所有电流传感器与电机群直流母线电流传感器的采样误差。所述步骤5中,系统n个逆变器的斩波周期从初始状态终回归初始状态,随后依据类似的方法依次对逆变器2,...,n的斩波周期进行移相处理,利用相关电流采样点处的电流值对相应电机组的电流传感器采样误差进行校正,终利用电机群多电机子系统之间的关联性,对各个子系统之间的电流传感器误差进行协同校正,终完成电机群电流传感器误差协同校正的目标;依据电机子系统1电流采样误差校正方法,结合斩波周期依次移相的方法,将其余n-1个电机子系统的电流采样误差进行消除,终消除电机群所有电流传感器的偏置误差,并得到各个电机子系统所有电流传感器的增益误差关系,利用共有的电机群直流母线电流传感器增益误差系数,终实现增益误差的协同消除。 智能智能制造销售哪家好,诚心推荐无锡功恒精密。

    因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。(5)其他具有数据交互功能的电子装置。另外,本发明实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述图1至图5实施例中任一项所述的方法流程。以上结合附图详细说明了本发明的技术方案,通过本发明的技术方案,能够在gps等卫星定位系统的信号易被阻挡的桥下或室内等环境中对车辆位置信息进行及时、准确的获取,从而便于路侧设备与车载设备相配合执行车路协同功能,增加了桥下或室内等环境中的驾驶安全性能,提升了车辆用户体验。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。此外,术语“”、“第二”仅用于描述目的。协同系统推荐厂家哪家好,诚心推荐无锡功恒精密。宜兴正规协同系统

协同系统制造厂家哪家好,诚心推荐无锡功恒精密。宜兴正规协同系统

    本发明涉及车路协同领域,尤其是涉及一种车路协同系统测试方法及架构。背景技术:智能网联处于我国交通技术发展的支撑地位,是未来智能交通系统的之一,也是我国抢占智能交通前沿技术制高点的关键。随着车路协同、智能网联等技术获得社会各界的大量关注和投入,车路协同技术相关软硬件的开发也由初的模型层次(微观,中观,宏观)向着更真实更复杂的环境发展。为促进该技术的进一步发展,美国、中国、欧盟等国家和地区不断增加智能网联车方面的投入。车路协同技术逐渐演变成为交通、汽车、通信、电子多学科高度集成与交叉的领域。测试是所有技术成熟应用的关键,技术的开发离不开测试。车路协同中基本的一部分是智能网联车,传统的针对智能网联车测试方法主要包括仿真测试、封闭场景测试和开放道路测试。仿真测试过程难以对人、车和环境精确建模导致仿真结果往往与真实情况相去甚远。如果全部进行封闭道路测试和实际道路测试,所需的费用和时间都将难以计量。据测算如果要达到无人驾驶安全上路的要求,大概需要进行8bmiles(8亿英里)的道路测试,而这相当于100辆无人车在每天24小时每周7天每年365天跑400年!因此,如何安全高效地测试车路协同系统成为一个亟需解决的问题。宜兴正规协同系统

无锡功恒精密机械制造有限公司坐落在锡北镇新坝工业园八达大道1号,是一家专业的精密机械设备及配件、普通机械设备及配件、汽车零配件、电气机械、模具的制造、加工、销售、技术转让、技术研发、技术服务;软件的开发及销售;培训服务(不含发证、不含国家统一认可的职业证书类培训)、自营和代理各类商品及技术的进出口业务,但国家限定企业经营或禁止进出口的商品和技术除外。公司。一批专业的技术团队,是实现企业战略目标的基础,是企业持续发展的动力。无锡功恒精密机械制造有限公司主营业务涵盖MES系统,智能制造系统,协同系统,智能协同软件,坚持“质量保证、良好服务、顾客满意”的质量方针,赢得广大客户的支持和信赖。公司深耕MES系统,智能制造系统,协同系统,智能协同软件,正积蓄着更大的能量,向更广阔的空间、更宽泛的领域拓展。

信息来源于互联网 本站不为信息真实性负责