安徽多负载无线电能传输WPT技术

时间:2023年08月10日 来源:

针对传统CPT系统单个逆变器传输的能量不能满足实际轨道交通大功率需求的问题,本文在六极板耦合电容结构简化为三端口电路模型的基础上,提出了一种双发射单接收CPT系统,通过提升逆变器输入功率总容量的方式,实现大功率输出。采用有限元分析法在Maxwell中仿真得到极板耦合电容值,实验搭建了传输距离为22mm的双发射单接收与同发射面积、同传输距离的单发射单接收CPT系统,均实现了1.47kW大功率能量传输。无线电力传输(WPT)技术,是一种更容易、更安全的电池充电的良好技术。无线电能传输WPT技术可以使电力传输更加高效、方便和环保。安徽多负载无线电能传输WPT技术

使用射频/微波功率传输的 WPT 要么受到安全限制的限制,要么无法在保持远距离效率的同时提供足够的功率水平。这些系统主要在天线/整流天线设计、衍射、干扰和环境问题方面面临挑战 。尽管 RFWPT 系统具有潜力,但这些系统中使用的 EM 波的色散特性往往会增加自由空间损耗、多径衰落和有害辐射。所有这些因素都导致使用 RFWPT无法实现高能效。此外,使用单色激光的光功率传输可以在高功率能量水平上实现远距离无线传输。然而,达到国际电工委员会 (IEC) 规定的安全能量水平是基于激光的无线能量传输的失败之一。北京智能电表无线电能传输WPT承包利用无线电能传输WPT技术,可以降低电能传输的损耗和成本。

问题与对策:无线电力传输的主要障碍是无线电力传输的效率和距离,无线电波的弥散、吸收与衰减是无线输电的难点。电磁波在自由空间传输能量的过程中会向四面八方散发、不易集中、定向性差,能量在无线传输过程中,空气作为耦合介质,电力载体的磁力线会有极大损耗,特别是微波,漫射在空间,能量衰竭更快。因此无线电力传输功率低,整体效率差,难以输送大量的能量,电力难以进行大功率远距离的无线传输。对于无线充电,充电器与被充电设备之间以磁场形式连接,各种各样的干扰会造成能量传输的损耗,电磁感应方式传送能量较小、传送范围较小等问题也制约着电动汽车的无线充电发展。

无线电能传输(Wireless Power transfer,WPT)作为一种新型的输电方式,可以不经过任何的电气接触,以空气为介质通过电场、磁场来实现电能从电源到负载的传输。该技术克服了传统的有线电能传输系统易摩擦、老化、产生火花的缺点,并且在许多特殊领域有无法替代的优势,如矿井、水下等。2007年,麻省理工学院(MIT)初次提出了磁耦合谐振式无线电能传输(RWPT)技术并试验成功。随后,RWPT技术受到国内外学者越来越多的研究。RWPT技术传输主要参数指标有传输距离、传输功率、传输效率等。谐振电路的拓扑结构对于这些参数的影响至关重要,因此如何选择合适的电路拓扑值得研究。WPT可以通过多种方式进行实现,例如电磁感应、电磁共振和毫米波传输等。

常见的无线电能传输方式主要分为磁场耦合式(Inductive Power Transfer, IPT)和电场耦合式(Contactless Power Transfer,CPT)。IPT系统采用高频交变磁场传递能量,随着半导体功率开关及电力电子技术的发展,其应用较为普遍,目前国内外研究热点集中于磁场耦合方式。但是在轨道交通等大功率非接触供电领域中,机车车体和轨道通常由钢材或铝合金材料构成,IPT系统对金属较敏感,会引起金属发热产生涡流损耗,使得传输效率下降。同时其耦合机构需要使用铁氧体材料和利兹线来绕制,增加了重量和成本。通过使用WPT,可以实现无线传感器网络和物联网设备的无线充电和运行。湖南切换式无线电能传输WPT市价

电磁共振适于中等距离传输,通常在m级别。安徽多负载无线电能传输WPT技术

CPT系统以高频电场作为载能介质,只用轻薄廉价的铝板或铜板作为耦合机构,在周围存在金属物体时,泄漏电场不会在其中引起涡流损耗,具有良好的传导性且耦合机构的成本较低、重量较轻。因此逐渐吸引了国内外研究团队对CPT技术展开研究。将CPT系统应用于轨道交通等大功率场合供电时,要求实现大功率电能的非接触传输。然而在实际应用中,由于逆变器及功率开关器件的容量有限,单个逆变器较难满足CPT系统大功率电能传输的要求,因此有必要在现有开关器件和逆变器水平条件下,研究增大逆变器总容量的方法来提升CPT系统的传输功率。安徽多负载无线电能传输WPT技术

上海鹿卢实业有限公司主要经营范围是建筑、建材,拥有一支专业技术团队和良好的市场口碑。鹿卢实业致力于为客户提供良好的电子与智能化系统集成EP,无线电能传输WPT,建筑智能化系统工程,智慧城市、智慧交通、智慧,一切以用户需求为中心,深受广大客户的欢迎。公司从事建筑、建材多年,有着创新的设计、强大的技术,还有一批专业化的队伍,确保为客户提供良好的产品及服务。鹿卢实业凭借创新的产品、专业的服务、众多的成功案例积累起来的声誉和口碑,让企业发展再上新高。

信息来源于互联网 本站不为信息真实性负责