抗静电尼龙供应
PA6应用于电子、汽车等工业领域。其民用丝行业消费比例较高,服装用锦纶长丝,约为58%。轮胎骨架锦纶帘子布市场使用PA6约占13%。工程塑料类使用PA6占12%,包括注塑料及改性塑料。渔网丝用PA6约占6%。生产BOPA膜的塑膜级PA6占4%,生产地毯、羊毛衫、无纺布等用品的短纤类PA6占4%,其他用于生产PA棒、PA胶带等用PA6占3%。PA66在服装、装饰、工程塑料等领域中应用广。其消费比例中比较高的为工程塑料,占到总消耗量的65%,而工业丝占到20%,其他占到总消耗的15%。PA66的下游产品多集中在工程塑料,因其刚性有余、韧性不足,不适宜纺丝。可注塑和挤出成型,具有强度高、韧性好、耐高低温等性能特点。抗静电尼龙供应
透明PA:具有良好的拉伸强度、耐冲击强度、刚性、耐磨性、耐化学性、表面硬度等性能,透光率高,与光学玻璃相近,加工温度为300--315℃,成型加工时,需严格控制机筒温度,熔体温度太高会因降解而导致制品变色,温度太低会因塑化不良而影响制品的透明度。模具温度尽量取低些,模具温度高会因结晶而使制品的透明度降低。阻燃PA:大部分阻燃剂在高温下易分解,释放出酸性物质,对金属具有腐蚀作用,因此,塑化元件(螺杆、过胶头、过胶圈、过胶垫圈、法兰等)需镀硬鉻处理。工艺方面,尽量控制机筒温度不能过高,注射速度不能太快,以避免因胶料温度过高而分解引起制品变色和力学性能下降。导电PA厂家直销可注塑成型,具有强度高、阻燃等性能特点,可制备一般工程用阻燃制品和电子电气制品等。
从工艺上讲,玻璃纤维增强PA生产工艺有两种:一种是短纤法,即玻璃短纤维与PA经混合后挤出造粒;另-种是长纤法,玻璃纤维与PA从不同的位置进入双螺杆挤出机。PA与助剂混合后加入料斗,玻璃纤维则从玻璃纤维入口处通过螺杆转动将其连续带入螺杆。玻璃纤维增强尼龙可用于机械、汽车部件和航空用部件等。用于高聚物增强玻璃纤维一般采用无碱纤维。无碱纤维的电绝缘性好、机械强度高、水解度低、耐水耐弱碱性好。玻璃纤维在螺杆挤出机高剪切和混合作用下,被切成一定长度的纤维均匀地分布在PA基体树脂中,从而增强了材料承受外力作用的能力。在宏观上显示出材料弯曲强度、拉伸强度等力学性能的大幅度提高。
增强尼龙的品种十分繁多,几乎所有尼龙都可以制造增强品级。商品化较多的品种有:增强PA6、增强PA66、增强PA46、增强PA1010、增强PA610等。其中,产量与用量较大的是增强PA6、增强PA66。增强尼龙从组成上划分还可以分为增强填充尼龙(即在增强的同时,适当的在增强尼龙中加入一些无机填料,以改善其加工成型性能)、增强阻燃尼龙(在增强尼龙中添加一定的阻燃剂)、增强增韧尼龙(在增强尼龙中加人一定的弹性体)和纯增强尼龙四大类。35%玻璃纤维增强,阻燃V0级,可注塑成型,具有强度高、耐高温、阻燃等性能特点。
尼龙具有优异的力学性能、电性能、耐磨、耐化学药品性、润滑性,但也存在较突出的缺点,如吸水性较大,导致成型尺寸稳定性差。与钢材相比较,其优点是耐腐蚀、自润滑、相对密度小、易成型;其缺点是吸水性大、力学性能不足。所以,要想把尼龙作为工程结构材料,还需改善其性能,才能达到工业用途的要求。尼龙的改性分为化学改性和物理改性。化学改性是在聚合过程中加入第二、三单体进行共聚合,得到共聚尼龙。物理改性则是添加一些改性剂(如填充剂、增强材料、阻燃剂等)与尼龙共混,得到改性尼龙。物理改性方法又可分为增强、增韧、阻燃、填充、共混合金及纳米改性方法。尼龙的物理改性方法工艺简单,能够得到理想的改性材料,所以自20世纪80年代以来发展很快,并形成了当今的高新技术产业。通过在尼龙PA6材料中添加30%含量的玻璃纤维来制造增强塑料。改性塑料PA定做
星易迪生产供应30%矿物增强阻燃尼龙6,填充增强阻燃尼龙6,矿物增强阻燃PA6,PA6-M30。抗静电尼龙供应
玻璃纤维含量在30%以内。随玻璃纤维含量的增加,增强PA6热变形温度随之提高,超过35%以后,其热变形温度随玻璃纤维的增加变化不大,其他PA亦有类似的规律。玻璃纤维含量与成型收缩率的关系:玻璃纤维含量增加时增强PA的成型收缩率随之减小。几乎所有增强PA都有同样的规律。一般玻璃纤维含量达到35%时,其成型收缩率大致为0.2%玻璃纤维含量再增加时、成型收缩率变化不大。成型收缩率是材料的一项重要的加工性能,对于模具的设计、产品加工十分重要。抗静电尼龙供应