代理分销商WILLSEMI韦尔WS3221C68

时间:2024年05月05日 来源:

     ESD9X5VL是一款单向瞬态电压抑制器(TVS),为可能遭受静电放电(ESD)的敏感电子元件提供极高水平的保护。它被设计用于替代消费设备中的多层变阻器(MLV),适用于手机、笔记本电脑、平板电脑、机顶盒、液晶电视等设备。ESD9X5VL结合了一对极低电容转向二极管和一个TVS二极管。根据IEC61000-4-2标准,它可用于提供高达±20kV(接触和空气放电)的ESD保护,并根据IEC61000-4-5标准承受8/20μs脉冲的峰值电流高达4A。ESD9X5VL采用FBP-02C封装,标准产品为无铅、无卤素。

特性:

· 截止电压:5V

· 根据IEC61000-4-2(ESD)为每条线路提供瞬态保护:±20kV(接触和空气放电)

· IEC61000-4-4(EFT):40A(5/50ns)

· IEC61000-4-5(浪涌):4A(8/20μs)

· 极低电容:CJ=1.2pF(典型值)

· 极低漏电流:IR<1nA(典型值)

· 低箝位电压:VCL=18V(典型值)@IPP=16A(TLP)

· 固态硅技术

应用:

· USB2.0和USB3.0

· HDMI1.3和HDMI1.4

· SATA和eSATA

· DVI

· IEEE 1394

· PCI Express

· 便携式电子产品

· 笔记本电脑

    ESD9X5VL是保护高速数据接口免受静电放电损害的瞬态电压抑制器。响应迅速,避免噪声和干扰,高可靠且适用于便携式设备。详情查阅手册或联系我们。 WS72358M-8/TR 运算放大器 封装:MSOP-8。代理分销商WILLSEMI韦尔WS3221C68

代理分销商WILLSEMI韦尔WS3221C68,WILLSEMI韦尔

    WPM3407是一款使用先进沟槽技术制成的器件,其特点是在低门极电荷下提供出色的RDS(ON)。这种器件非常适合用于DC-DC转换应用。

特点:

    RDS(ON)出色:RDS(ON)是指器件在导通状态下的电阻,3407通过先进的沟槽技术实现了低RDS(ON),这意味着在器件导通时,其电阻较小,从而减小了能量损失。低门极电荷:门极电荷是描述开关器件从关闭到打开或从打开到关闭所需电荷量的参数。3407的低门极电荷可以更快地开关,从而减少开关损耗。无铅:符合环保要求,适用于对无铅产品有需求的场合。

应用:

    笔记本电脑的电源管理:3407可以用于笔记本电脑中的DC-DC转换器,以提供稳定的电源。

    便携式设备:由于它的快速开关和低能量损失,3407也适用于各种便携式设备,如智能手机、平板电脑等。

    电池供电系统:在电池供电的应用中,减少能量损失和延长电池寿命是非常重要的,3407的出色RDS(ON)和低门极电荷特性使其成为电池供电系统的理想选择。

    DC/DC转换器:这是3407的主要应用之一,用于将一种直流电压转换为另一种直流电压。

    负载开关:3407可以用于控制电路的通断,实现负载开关的功能。

    如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。 中文资料WILLSEMI韦尔WNM3025AWAS3157B-6/TR 模拟开关/多路复用器 封装:SOT-363。

代理分销商WILLSEMI韦尔WS3221C68,WILLSEMI韦尔

WPM1481:单P沟道、-12V、-5.1A功率MOSFET

产品描述:

    WPM1481是一款P沟道增强型MOS场效应晶体管。它采用了先进的沟槽技术和设计,以提供出色的RDS(ON)和低栅极电荷。这款器件适用于DC-DC转换、电源开关和充电电路。标准产品WPM1481为无铅产品。小型DFN2*2-6L封装。

产品特性:

· 沟槽技术

· 超高密度单元设计

· 出色的导通电阻

· 适用于更高的直流电流

· 极低的阈值电压

应用领域:

· 继电器、电磁阀、电机、LED等的驱动器

· DC-DC转换电路

· 电源开关

· 负载开关

· 充电应用  

     WPM1481是一款高性能的P沟道功率MOSFET,专为高电流应用而设计。其出色的RDS(ON)和极低的阈值电压使其成为DC-DC转换、电源开关和充电电路的理想选择。同时,其小型DFN2*2-6L封装使得它在空间受限的应用中也能发挥出色。WPM1481作为无铅产品,还符合环保要求。无论是用于驱动继电器、电磁阀、电机还是LED,WPM1481都能提供可靠且高效的性能。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。

ESD5311Z单线、双向、极低电容瞬态电压抑制器

产品描述

     ESD5311Z是一款极低电容的瞬态电压抑制器(TVS),专为保护高速数据接口而设计。它特别针对连接到数据和传输线的敏感电子组件,以防止因静电放电(ESD)而产生的过应力。ESD5311Z包含一个极低电容的转向二极管对和一个TVS二极管。根据IEC61000-4-2标准,ESD5311Z可用于提供高达±20kV(接触放电)的ESD保护,并根据IEC61000-4-5标准承受高达4A(8/20μs)的峰值脉冲电流。ESD5311Z采用DFN0603-2L封装。标准产品为无铅且无卤素。

产品特性

截止电压:5V

每条线路根据IEC61000-4-2(ESD)标准进行瞬态保护:±20kV(接触放电)

根据IEC61000-4-4(EFT)标准进行瞬态保护:40A(5/50ns)

根据IEC61000-4-5(浪涌)标准进行瞬态保护:4A(8/20μs)

极低电容:CJ=0.25pF(典型值)

极低漏电流:IR<1nA(典型值)

低钳位电压:VCL=21V(典型值)@IPP=16A(TLP)


应用领域

USB2.0和USB3.0

HDMI1.3和HDMI1.4

SATA和eSATA

DVI

IEEE 1394

PCI Express

便携式电子设备

笔记本电脑 

     ESD5311Z专为高速数据接口设计,极低电容,出色保护,防止静电放电损害。适用于USB、HDMI等接口,保护敏感组件。紧凑封装,适合便携式设备。详情查阅手册或联系我们。 WAS4768Q-10/TR 模拟开关/多路复用器 封装:QFN-10(1.8x1.4)。

代理分销商WILLSEMI韦尔WS3221C68,WILLSEMI韦尔

    WS4601是一款具有极低导通电阻的P-MOSFET高侧开关。集成的电流限制功能可以限制大电容负载、过载电流和短路电流的涌入,从而保护电源。WS4601还集成了反向保护功能,当设备关闭时,可以消除开关上的任何反向电流流动。设备关闭时,输出自动放电,使输出电压迅速关闭。热关断功能可以保护设备和负载。WS4601采用SOT-23-5L封装。标准产品是无铅且无卤素的。

特性:

· 输入电压范围:2.5~5.5V

· 主开关RON:80mΩ@VIN=5V

· 持续输出电流:1.0A

· 电流限制阈值:1.5A(典型值)

· 电流限制精度:±20%

· 输出短路电流:0.7A(典型值)

· 自动放电反向阻断(无“体二极管”)

· 过温保护

应用:

· USB外设USB Dongle

· USB 3G数据卡

· 3.3V或5V电源开关

· 3.3V或5V电源分配

    WS4601是一款专为现代电子设备设计的高性能高侧开关。其极低导通电阻的P-MOSFET结构使其在处理大电流时高效且节能。集成的电流限制功能保护电源免受过大电流损害,确保系统稳定可靠。自动放电功能和反向保护功能进一步增强系统安全性。适用于USB外设、USB Dongle等需要高效电源管理的场合。无论3.3V还是5V系统,WS4601都提供出色的性能和保护机制,确保设备正常运行。如需更多信息,请查阅数据手册或联系我们。 SPD8811B-2/TR 半导体放电管(TSS) 封装:SMB。中文资料WILLSEMI韦尔ESD56101D10

WPM2341-3/TR 场效应管(MOSFET) 封装:SOT-23。代理分销商WILLSEMI韦尔WS3221C68

WD1502F:28V,2A降压型(Step-Down)直流/直流(DC/DC)转换器

    WD1502F是一款高效率、同步降压型DC-DC转换器。它可以在4.5V至28V的输入电压范围内工作,并提供高达2A的连续输出电流。内部同步功率开关可在不使用外部肖特基二极管的情况下提供高效率。WD1502F以650kHz的固定开关频率工作,并采用脉冲宽度调制(PWM)。在轻负载电流时,它会进入脉冲跳变调制(PSM)操作,以在整个负载电流范围内保持高效率和低输出纹波。WD1502F具有短路保护、热保护和输入欠压锁定功能。它采用TSOT-23-6L封装,为标准无铅和无卤素产品。

其主要特性包括:

· 宽范围4.5V~28V的工作输入电压

· 典型的650kHz开关频率

· 2A连续输出电流

· 低至2μA的关机电流,60μA的静态电流

· 内部5mS软启动

· 峰值效率>94%

· 150mΩ内部功率HSMOSFET开关

· 75mΩ内部同步LSMOSFET开关

· 逐周期过流保护

应用领域包括:

· 12V、24V分布式电源总线供电

· 工业应用

· 白色家电

· 消费类应用

     WD1502F适用于需要高效、紧凑和可靠电源转换的多种应用。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。 代理分销商WILLSEMI韦尔WS3221C68

信息来源于互联网 本站不为信息真实性负责