山东原子力显微镜测试联系方式

时间:2024年05月25日 来源:

原子力显微镜是在1986年由扫描隧道显微镜(ScanningTunnelingMicroscope)的发明者之一的葛宾尼(GerdBinnig)博士在美国斯坦福大学与C.FQuate和C.Gerber等人研制成功的。[1]它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。原子力显微镜,一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。山东原子力显微镜测试联系方式

随着科学技术的发展,生命科学开始向定量科学方向发展。大部分实验的研究重点已经变成生物大分子,特别是核酸和蛋白质的结构及其相关功能的关系。因为AFM的工作范围很宽,可以在自然状态(空气或者液体)下对生物医学样品直接进行成像,分辨率也很高。因此,AFM已成为研究生物医学样品和生物大分子的重要工具之一。AFM应用主要包括三个方面:生物细胞的表面形态观测;生物大分子的结构及其他性质的观测研究;生物分子之间力谱曲线的观测。厦门原子力显微镜测试技术若样品表面柔嫩而不能承受这样的力,便不宜选用接触模式对样品表面进行成像。

AFM对RNA的研究还不是很多。结晶的转运RNA和单链病毒RNA以及寡聚Poly(A)的单链RNA分子的AFM图像已经被获得。因为在于不同的缓冲条件下,单链RNA的结构变化十分复杂,所以单链RNA分子的图像不容易采集。(利用AFM成像RNA分子需要对样品进行特殊和复杂的处理。Bayburt等借鉴Ni2+固定DNA的方法在缓冲条件下获得了单链Pre-mRNA分子的AFM图像。他们的做法如下:(1)用酸处理被Ni2+修饰的云母基底以增加结合力;(2)RNA分子在70℃退火,慢慢将其冷却至室温再滴加在用酸处理过的Ni2+-云母基底上。采用AFM单分子力谱技术,在Mg2+存在的溶液中,Liphardt等研究了形貌多变的RNA分子的机械去折叠过程,发现了从发夹结构到三螺旋连接体这些RNA分子三级结构的过渡态。随后他们又利用RNA分子证实了可逆非平衡功函和可逆平衡自由能在热力学上的等效性。)

原子力显微镜(AtomicForceMicroscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率;由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的格尔德·宾宁于一九八五年所发明的,其目的是为了使非导体也可以采用类似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)差别在于并非利用电子隧穿效应,而是检测原子之间的接触,原子键合,范德瓦耳斯力或卡西米尔效应等来呈现样品的表面特性;主要有以下3种操作模式接触模式(contactmode),非接触模式(non-contactmode)和敲击模式(tappingmode);

    原子力显微镜(AtomicForceMicroscope,AFM),通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。AFM是通过检测原子间极微弱的相互作用力来研究物质的表面结构及性质。其基本原理为原子间距离靠近,对外体现排斥作用力,原子距离远离,则体现相互吸引力,如图。原子力显微镜主要分为以下部件:探针针尖、悬臂、激光、PSD光电检测器、反馈成像系统。具体来说,将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖原子与样品表面原子间存在极微弱的排斥力,通过在扫描时这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用激光器发出的激光束经过光学系统聚焦在微悬臂背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器,此时。 微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测;江苏原子力显微镜测试价格

在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。山东原子力显微镜测试联系方式

AFM可以用来对细胞进行形态学观察,并进行图像的分析。通过观察细胞表面形态和三维结构,可以获得细胞的表面积、厚度、宽度和体积等的量化参数等。例如,利用AFM可以对后的细胞表面形态的改变、造骨细胞在加入底物(钴铬、钛、钛钒等)后细胞形态和细胞弹性的变化、GTP对胰腺外分泌细胞囊泡高度的影响进行研究;利用AFM还可以对自由基损伤的红细胞膜表面精细结构的研究,直接观察到自由基损伤,以及加女贞子保护作用后,对红细胞膜分子形态学的影响。山东原子力显微镜测试联系方式

信息来源于互联网 本站不为信息真实性负责