四川RK3399处理板图像识别模块人工智能芯片

时间:2024年07月24日 来源:

图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有的本身特征而先将这些图像分了类,然后通过各个类别所具有的特征将图像识别出来的,只是很多时候我们没有意识到这一点。慧视RV1126图像处理板能实现24小时、无间隙信息化监控。四川RK3399处理板图像识别模块人工智能芯片

图像识别模块

管人员远程操控无人机在道路上空进行巡飞,就能够发现哪条路上有违停车辆。相较于传统治理,无人机拥有更高视野及机动性。在提前规划无人机航线后,“自动机场”内部署的无人机会定时进行空中巡视,一旦发现违停车辆即开展图像取证。随后,后台系统将实时推送违停提示短信至车主,提醒其在10分钟内驶离。对于规定时间内未驶离的车辆,系统将通知附近的警力赶赴现场,二次取证并进行整治。这个过程中,可以利用无人机吊舱进行辅助,吊舱的使用能够进一步提升效率。例如成都慧视开发的VIZ-GT07D微型三轴双光惯性稳定吊舱,吊舱集成了640×512高分辨率红外相机、1300万像素的全高清可见光相机和陀螺稳定平台。当发现违停车辆时,无需抵近,即便是夜间也能够通过变焦放大就能够对车辆进行信息取证。重庆双光成像图像识别模块器RK3399图像处理板识别概率超过85%。

四川RK3399处理板图像识别模块人工智能芯片,图像识别模块

试想一下,当你走到一家超市,没有排队称重,没有传统的扫码收银机,也没有手机扫码支付,只有一台拥有5个摄像头的收银机,被AI赋能的智能零售技术相比于旧的零售业中所使用的人工结算方法,条形码扫码,以及没有被大量使用的RFID技术,智能零售可以让客户验到更便捷、更快速的称重、扫码、结账过程,用户好感度由此提升,人脸识别与顾客会员体系挂钩。顾客到店里,超市会提供更好的服务,结账时的自动识别商品,会更加节省人们的时间,让购物更加便捷。随着商品识别发展,机器人也可以整理货架、分拣货物、移动货位,代替人类做一些简易的、重复性的工作,生产效率会提升很多。

无人机吊舱除了在安防巡检、应急救援等领域有应用前景外,随着2024上半年低空经济的大力发展,吊舱迎来了又一大应用市场。利用无人机载物运输,具有便利高效的特点,它能够弥补传统运输的不足,提高交通运输的效率和灵活性,能够有效连接城区与郊区、城与城之前的资源互送,做到资源的协调调配。低空经济以无人机为载体,载动物品进行低空运输,这个过程中就可以用到无人机吊舱,慧视无人机吊舱内置摄像头+AI图像处理板,能够清晰获得无人机前方画面,在运输时能够实现避障等操作。慧视光电开发的VIZ-GT07D三轴双光惯性稳定吊舱,集成了640×512高分辨率红外相机、1300万像素的全高清可见光相机和陀螺稳定平台。超小的体积和重量,携行方便,无论是白天还是夜间,都能够获取清晰的视频画面,为无人机运输提供便利。慧视AI板卡能够凸显AI的智慧之能,变被动为主动,提供多种能主动预警的视频分析和人脸识别黑白名单管理。

四川RK3399处理板图像识别模块人工智能芯片,图像识别模块

索尼旗下的SONY-7520型号的摄像头作为高倍变焦镜头,能够广泛应用于安防、无人机吊舱、周界监控、边海防监控、森林防火等领域。特别是无人机吊舱,在图像处理板的赋能下,索尼7520相机能够让我们检测、追踪更多的细节,比如边海防监控跟踪、电力巡检、消防救灾、目标搜索跟踪等无人机航拍应用行业。了让相机具备强大的适应、工作能力,针对于无人机将会遇到的场景、工作要求,工程师以RV1126核心板为基础进行定制开发,让摄像头更加智能高效,能够输出高清流的图像视频。工程师以RK3399PRO核心板为基础进行定制开发,让摄像头更加智能高效,能够输出高清流的图像视频。重庆RK3399开发板图像识别模块供应商

无人机可能会受到敌方势力或者强风等因素干扰,造成不同幅度的振动,从而影响板卡能否正常完成任务。四川RK3399处理板图像识别模块人工智能芯片

在林河生态维护中一些例如垃圾偷倒、破坏林地、违规种养、偷排污水等问题对于人工巡检来说也是一大难点,要么难以发现,要么发现的不及时,而无人机的巡航能够尽可能做到时效性。另外,林河生态资源保护工作中,无人机可以捕捉到许多人工难以察觉的细节,如树木的生长状况、病虫害的发生情况、河道的夜间漂浮垃圾等,及时为管理人员提供更为准确的信息。无人机灵活便捷的特点可以很好地应用在此,可以说,无人机的运用是当下打造智慧林河长制的有利技术。四川RK3399处理板图像识别模块人工智能芯片

信息来源于互联网 本站不为信息真实性负责