江西目标跟踪好选择
视觉跟踪技术是计算机视觉领域(人工智能分支)的一个重要课题,有着重要的研究意义;且在导弹制导、视频监控、机器人视觉导航、人机交互、以及医疗诊断等许多方面有着广泛的应用前景。随着研究人员不断地深入研究,视觉目标跟踪在近十几年里有了突破性的进展,使得视觉跟踪算法不只是局限于传统的机器学习方法,更是结合了近些年人工智能热潮—深度学习(神经网络)和相关滤波器等方法,并取得了鲁棒(robust)、精确、稳定的结果。慧视光电基于AI图像处理的监控监管方案能够实现安全生产。江西目标跟踪好选择
目标跟踪
视觉目标跟踪是指在视频图像序列的各帧图像中找到被跟踪的目标。基于区域的跟踪的基本思想是通过图像分割或预先人为确定,提取包含着运动目标的运动变化的区域范围作为匹配的目标模板,然后把目标模板与实时图像在所有可能位置上进行叠加,然后计算某种图像相似性度量的相应值,其比较大相似性相对应的位置就是目标的位置,Jorge等人提出的区域跟踪算法不仅利用了分割结果来给跟踪提供信息,同时也能利用跟踪所提供的信息改善分割效果,把连续帧的目标匹配起来跟踪目标。江西目标跟踪好选择推荐使用慧视光电的跟踪板卡。
目标跟踪时,多维度、多层级信息融合也十分重要。为了提高对运动目标表观描述的准确度与可信性,现有的检测与跟踪算法通常对时域、空域、频域等不同特征信息进行融合,综合利用各种冗余、互补信息提升算法的精确性与鲁棒性.然而,目前大多算法还只是对单一时间、单一空间的多尺度信息进行融合,使用者可以考虑从时间、推理等不同维度,对特征、决策等不同层级的多源互补信息进行融合,提升检测与跟踪的准确性。成都慧视开发的Viztra-HE030图像处理板采用了RK3588高性能芯片,工业级的处理能力能够运用到诸多行业。
另外,经典的跟踪方法还有基于特征点的光流跟踪,在目标上提取一些特征点,然后在下一帧计算这些特征点的光流匹配点,统计得到目标的位置。在跟踪的过程中,需要不断补充新的特征点,删除置信度不佳的特征点,以此来适应目标在运动中的形状变化。本质上可以认为光流跟踪属于用特征点的来表征目标模型的方法。在深度学习和相关滤波的跟踪方法出现后,经典的跟踪方法都被舍弃,这主要是因为这些经典方法无法处理和适应复杂的跟踪变化,它们的鲁棒性和准确度都被前沿的算法所超越,但是,了解它们对理解跟踪过程是有必要的,有些方法在工程上仍然有十分重要的应用,常常被当作一种重要的辅助手段。慧视AI图像处理板是高精度识别的板卡。
人工智能起源于上个世纪五十年代,被誉为新时代工业发展的引擎。随着技术的发展,为了使得计算机可以拥有像人眼一样感知、分析、处理现实世界的能力,六十年代初,人工智能衍生出了一个重要的分支,计算机视觉。在计算机视觉的研究过程中,学者们为了阐述“根据目标在视频中的某一帧状态来估计其在后续帧中的状态”,一个新的学科——目标跟踪应运而生。目标跟踪是计算机视觉和机器人研发领域的重要分支,在人机交互、安全监控、自动驾驶、城市交通、军领域、医疗诊断等领域都发挥了重要的作用,其主要功能就是在视频图像中遍历感兴趣的区域,并在接下来的视频帧中对其进行跟踪慧视RK3399PRO图像跟踪板支持目标跟踪识别目标(人、车)。江西目标跟踪好选择
如何实现稳定的目标跟踪?江西目标跟踪好选择
设想这样一个场景:孙悟空在飞行过程中完成了一次变化(这里假设他变成了一只鸟),但这个变化并不是像西游记拍摄中有烟雾效果完成的,而就是通过身体结构发生渐变来完成的,这种情况下,检测器应该会在后续的检测任务中失败,因为设计好的检测器只是为了检测目标孙悟空的存在,孙悟空变身之后已经不存在这个目标,检测器是不会有火眼金睛继续检测到变化后的孙悟空的。但是,对于跟踪设备就不一样了,跟踪目标,哪怕目标在跟踪过程中发生了巨大变化,这些都是跟踪设备的本质能力。理想的跟踪设备应该可以很好的跟上孙悟空渐变的整个过程,并且可以继续后面变身之后对鸟的跟踪。江西目标跟踪好选择
上一篇: 湖南放心目标检测生产企业
下一篇: 新疆质量目标跟踪