定制脂质体载药显影

时间:2024年06月17日 来源:

PEG的低分⼦量(<750Da)显⽰出不***的空间稳定作⽤[58]。此外,当PEG-DSPE在脂质组合中的浓度为7±2mol%时,脂质体的⽣物稳定性**⾼,⽽在体内使⽤的peg-脂质偶联物的典型浓度为5mol%(例如Doxil)。当PEG-DSPE浓度低于4mol%时,PEG链呈“蘑菇”状,厚度约为3.5nm。随着浓度增加4-8mol%,PEG链的构型转变为“刷状”,厚度为4.5-10nm。进⼀步增加摩尔⽐,形成胶束⽽不是脂质体组装。综上所述,PEG2000在脂质体中的作用包括增强稳定性、延长血液循环时间、降低免疫原性以及调控药物释放,使其成为药物输送系统设计中常用的功能性修饰剂。脂质体制备方法:超声破碎和挤压技术。定制脂质体载药显影

定制脂质体载药显影,脂质体载药

由于阿⽶卡星在⼄醇中的溶解度有限,在使⽤⼄醇输注制备脂质体过程中,阿⽶卡星转移到半可溶性的凝聚状态,被包裹在脂质体的核⼼内部。令⼈惊讶的是,获得了较⾼的包封效率(在优化的制备参数下,游离药物为5.2%)和药脂⽐(~0.7)。由于其多阳离⼦性质,被包封的药物在脂质体膜上表现出低通透性,使脂质体在⾎液循环过程中保持稳定。阿糖胞苷(DepoCyte)、**(DepoDur)和布⽐卡因(Exparel)⽔溶液被包裹在MVLs 的腔室中(由94%的⽔腔和4%的脂质组成);因此,⼩体积的脂质体悬浮液中含有⼤量药物。为了进⼀步提⾼包封效率和缓释,可采⽤将药物化合物从单质⼦⽆机酸盐转化为⼆质⼦或三质⼦⽆机酸盐(如硫酸盐盐或磷酸盐)和多醇有机酸共包封的⽅法。云南全氟丙烷脂质体载药通过连接剂将药物分⼦与脂质共价连接是另⼀种在脂质体内装载药物的有效策略。

定制脂质体载药显影,脂质体载药

。NLC的设计方法是在室温下将少量脂质液体引入SLN中,降低脂质**的结晶度。NLC结晶度的降低抑制了药物从基质中的排出,增强了纳米颗粒的载药能力和物理和化学长期稳定性。SLN和NLC由脂类和稳定剂(如表面活性剂和其他涂层材料)组成。典型的脂类成分如所示,包括脂肪酸、脂肪醇、甘油酯和蜡。表面活性剂位于脂质-水界面,降低了脂质和水相之间的界面张力,提高了所得配方的稳定性。SLN和NLC通常采用各种有机无溶剂方法生产,如高压均相法Nization、高速搅拌、超声、乳状液/溶剂蒸发、双乳、相转化、溶剂非层状脂质纳米颗粒。其他类型的LNP结构也被研究用于药物输送。

基于药代动⼒学机制和脂质体性质,脂质体的质量控制通常包括粒径和粒径分布、形态、层状结构、表⾯性质(zeta电位、PEGlated厚度和靶分⼦,如配体)、脂膜相变温度、载药效率、释放速率等。例如,脂质体的⽚层结构会影响药物的释放速度,⽽形态会影响脂质体在体内的循环时间。

健康组织和**组织之间的血管系统差异使EPR效应得以实现。反过来, 由于不太完美的细胞填充导致更多的泄漏性质, 血管在细胞中具有较大的间隙。 因此,脂质体通过逃离血管的被动靶向效应在**中积累。对几种不同**的被动靶向是由体内脂质体的大小和稳定性决定的。这可归因于它们的小尺寸延长了循环时间并在组织中外渗。因此,考虑到各种脂质体药理学研究的报告数据,可以得出结论,较小的脂质体有更多机会逃脱RES系统的非特异性摄取。 脂质体的粒径和粒径分布的检测。

定制脂质体载药显影,脂质体载药

质粒DNA脂质体质粒DNA要在细胞内被有效地翻译,质粒DNA必须经过有效的细胞内运输进入细胞质,并从细胞质进入细胞核。编码白细胞介素12(一种具有抗**活性的细胞因子)的质粒DNA与阳离子脂质体配合,并在转移性肺*小鼠模型中测试其体内***作用。所研究的阳离子脂质体由全反式维甲酸(增强抗肿瘤作用)、DOTAP和胆固醇(摩尔比10:0.5:0.5)组成,与编码白介素12的质粒DNA配合。2次静脉注射质粒DNA(1.2mg/kg/只)后,与对照组相比,**结节和肿瘤细胞数量减少。在另一项研究中,应用由O,O-ditetradecanoyl-N-(α-trimethyl-ammonioacetyl)diethanolaminechloride(DC-6-14)、DOPE和胆固醇组成的阳离子脂质体递送表达miRNA7的质粒DNA。在携带酪氨酸激酶抑制剂耐药的异种移植**的小鼠身上测试了脂质体的***效果。**内注射阳离子脂质体复合物包封质粒(每只小鼠3ug)与注射乱码miRNA质粒DNA脂质体的小鼠相比,***抑制**生长。被动载药⽅法是在脂质体制备过程中对药物进⾏包封的方法。中国澳门脂质体载药技术公司

固体脂质纳米颗粒和纳米结构脂质载体的区别。定制脂质体载药显影

脂质体制备方法:破碎技术尺⼨和尺⼨分布是脂质体性能和安全性的关键属性。有⼏种⽅法可⽤于减少脂质体的尺⼨,如(超)超声(通过浴或探针),挤压,均质,或组合⽅法,如冻融挤压,冻融超声和⾼压均质挤压技术。在这些技术中,挤压和⾼压均质(HPH)是在制药制造中**常⽤的技术。⼤尺⼨的脂质体通过聚碳酸酯膜(50nm~5µm)成为粒径分布精细的较⼩的脂质体。众所周知,商业化的纳⽶脂质体产品,包括Onivyde、Vyxeos、Marqibo等,都是采⽤这种⽅法进⾏⽣产的。该⽅法相对简单,重现性好,只需要适中的条件。尺⼨减⼩的潜在机制是MLV在膜孔⼊⼝处破裂,并在膜通过过程中重新排列。关键的⼯艺参数,如聚碳酸酯膜的孔径、通过循环次数、压⼒和流速等,都可以影响脂质体的⼤⼩和⽚层性。Ong等⼈发现,在⽐较其他不同的纳⽶化技术(包括冻融超声、超声和均质化)时,挤出是***的技术。然⽽,挤压可能会降低脂质体的包封性并改变不对称脂质体的结构。HPH⽤于⽣产各种纳⽶制剂,如脂质体、纳⽶晶体和纳⽶乳液。它既适⽤于⽔体系,也适⽤于⾮⽔体系,并提供不同的⽣产规模,从容量为10L/h的实验室规模到容量为10万L/h的⼤型⽣产规模。定制脂质体载药显影

信息来源于互联网 本站不为信息真实性负责