河北超声微泡给药

时间:2024年07月05日 来源:

气泡将改变血管壁,允许药物剂外渗,通过将微泡与颗粒和染料共同注射,可评估血管外药物递送的可行性。微泡与钆共注射后MRI显示钆外反酸。或者,药物可以被纳入微泡中,并通过在病变的给药血管中选择性地破裂微泡来增加局部给药。然而,这些方法并不能消除流动血液中释放的药物的冲洗和全身分布。有报道成功地证明了微泡减少新内膜形成、内皮转染和凝块溶解。尽管迄今为止递送的微泡有效载荷的体积很小,但药物或基因通过血脑屏障(BBB)的递送是基于微泡的递送的一个有前途的应用,因为很少有替代方法可以改变BBB对如此***的货物的渗透性。如前所述,超声辐照被描述为在破坏微泡之前将微泡推向血管壁的方法。在运载工具破裂时,通向血管壁的微泡将有效地将药物涂在腔内。与单独使用超声波相比,这种方法导致体外细胞中荧光标记油的沉积量增加了十倍。载药超声微泡造影剂的设计之一是使药物由于细胞内pH值的变化或外部光或声音的刺激而释放。河北超声微泡给药

河北超声微泡给药,超声微泡

如果这些气泡要在患者体内给药后与特定受体结合,就必须将靶向配体附着到微泡壳上。偶联可以通过共价或非共价手段来实现,也可以通过这些技术的组合来实现。对于没有被气泡制造的恶劣条件灭活的小分子配体,只需将配体-聚合物/脂质偶联物(例如,生物素衍生物)添加到气泡制备介质中。在某些情况下,即使是蛋白质,如亲和素,也可以通过超声与白蛋白一起合并到气泡壳中,并保留其特定活性。研究中使用的许多配体都以生物素化的形式存在,只需将它们添加到亲和素包被或链亲和素包被的气泡中,就会产生配体装饰的气泡。靶向配体被拴在微泡壳上。或者,不会在微泡制备中存活的蛋白质配体(如抗体)可以共价附着在预配制的气泡上,例如,通过酰胺键形成。通过附着配体靶向微泡的过程可以用以下顺序来描述。配体修饰的气泡随着血流在脉管系统中移动;一小部分气泡会撞到物体上,比如携带特定受体的内皮细胞、白细胞或血凝块,这些都是分子成像的实际目标。河北超声微泡给药微泡空化时细胞膜和血管通透性的变化。

河北超声微泡给药,超声微泡

超声微泡的粒径大小直接影响微泡的动物的体内渗透和代谢。首先,与传统药物相比,超声造影剂微泡相对较大。微泡的直径一般为1-10um。**血管特别具有渗透性,通常有较大的内皮间隙;然而,造影剂微泡通常太大而无法脱离脉管系统。在Wheatley等人**近的一篇文章中,描述了一种纳米颗粒超声造影剂(直径450nm)具有良好的声学性能。该造影剂在实验家兔中产生了良好的肾脏混浊。南京星叶生物也有500nm左右的超声微泡造影剂。虽然超声造影剂的循环时间在过去几年有所增加,但这也是超声绐药时需要关注的问题。例如,索诺维的消除半衰期为6分钟。Albunex的摄取发生在大鼠和猪的肝脏、肺和脾脏,70%在3分钟内从血液中***。如果药物被网状内皮系统从循环中取出,则循环时间可能不够长,无法将更多的药物递送到目标区域。造影剂通常被注入外周静脉,因此在一个给定的循环周期中,只有少量的造影剂会通过**。为了破坏足够的造影剂以***增加局部浓度,必须进行多次循环。聚合物壳剂可**增加循环时间。虽然超声微泡是相对较大的药物,但可以附着在气泡表面或纳入内部脂质层的药物量是一个问题。

**初的微泡靶向实验是在静态条件下进行的:将气泡与目标表面接触(通常是倒置),在没有流动的情况下孵育几分钟,然后将剩余的自由气泡洗掉,测量保留气泡的数量和声学响应。然而,这种情况并不是脉管系统内真正靶向的良好模型,在脉管系统内,结合发生时没有任何流动停止。取决于配体-受体结合和脱离动力学,以及配体和受体的表面密度、血流和壁剪切条件,与靶标的结合可能发生,也可能不发生。结合可能是短暂的(几分之一秒),也可能是长久的(几秒或几分钟),这取决于在初始接触期间有多少牢固的键有机会形成。了解微泡靶向性的比较好方法是在体外受控条件下,以已知的流速、配体和受体密度进行靶向性研究。平行板流室通常用于这些研究。一些配体(如抗体)能够与目标抗原牢固结合(一旦结合发生解离抗体和抗原可能需要几天的时间,但这种结合并不总是很快的。在流动的情况下,颗粒上的配体与受体结合的时间非常有限。在极端情况下(大血管中1米/秒的血流),典型的配体与受体结合位点线性尺寸为1纳米时,必须在1纳秒内发生有效结合,这是一个极短的时间,与大多数抗体-抗原kon动力学常数不相容。靶向微泡心脏成像研究是在急性缺血再灌注损伤模型中进行的。

河北超声微泡给药,超声微泡

微泡表面的加载也可以通过配体-受体相互作用来实现。例如,Lum等人**近报道了一项研究,其中纳米颗粒通过生物素-亲和素连锁结合到外壳上。固体聚苯乙烯纳米颗粒作为模型系统,可以用可生物降解的材料代替装载药物或基因的纳米颗粒。或者,软纳米颗粒,如脂质体,已成功加载到微泡。这些结果提出了一种模块化的加载方法,即首先将***性化合物加载到纳米颗粒室中,然后将其加载到微泡载体上。这种方法提供了一个多功能平台,可以根据特定***剂的疏水性、大小和释放要求进行定制。荧光标记的靶向微泡在血管生成过程中的应用。河北超声微泡给药

脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。河北超声微泡给药

超声微泡造影剂的外壳是有脂质组成的,脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。脂类是一大类化合物,由一个或多个碳氢化合物或碳氟化合物链共价连接到亲水性头基上,通常由甘油主链组成。脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。脂质自发地从可溶性聚集体(即胶束和囊泡)吸附到气液界面,并自组装成单层涂层。在纳米尺度上,分子定向使得疏水尾部面向气相,并通过疏水和分散力相互作用,这可以通过增加或减少链长来调节。低于主相转变温度的脂质形成高度凝聚的壳层。研究发现,增加链长可以降低壳的表面张力,增加表面粘度,气体渗透阻力和屈曲稳定性,从而产生更强健的微气泡。**近的发现已经改变了关于脂质壳结构的主流范式;现在人们认识到它是一个复杂的多相结构。Kim等人的开创性工作表明,脂质壳由由缺陷(晶界)分隔的平面微畴(晶粒)组成,这影响了力学性能。Borden等人的研究还表明,晶界区域是一个**的、更不稳定的相,富含某些单层成分,如脂聚合物,而微畴主要由卵磷脂组成。这两种相都是稳定微泡所必需的。河北超声微泡给药

信息来源于互联网 本站不为信息真实性负责