江苏不需要设置参数的AOI生产

时间:2021年08月18日 来源:

深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示。这些方法在许多方面都带来了明显的改善,包括先进的语音识别、视觉对象识别、对象检测和许多其它领域。深度学习能够发现大数据中的复杂结构。深度卷积网络在处理图像、视频、语音和音频方面带来了突破,而递归网络在处理序列数据,比如文本和语音方面表现出了闪亮的一面。 深度学习就是一种特征学习方法,把原始数据通过一些简单的但是非线性的模型转变成为更高层次的,更加抽象的表达。通过足够多的转换的组合,非常复杂的函数也可以被学习。采用高分辨率工业相机和智能图像分析,检测电子电路板上插件元器件多、错、漏、反等缺陷。江苏不需要设置参数的AOI生产

江苏不需要设置参数的AOI生产,AOI

经过波峰焊后,焊点所有的参数会有很大的变化,这主要是由于焊炉内锡的老化导致焊盘反射特性从光亮到灰暗,因此,在检查时算法上必须要包含这些变化。在波峰焊中,典型的缺陷是短路和焊珠。当检测到短路时,假如印刷的图案或者无反射印刷这两种情况的减少以及应用阻焊层,就可以消除这些误报。如果基准点没有被阻焊膜盖住而过波峰焊,可能会导致一个圆形基准点上锡成了一个半球,其内在的反射特性将会发生改变;应用十字型作为基准点或者用阻焊层覆盖基准点,可以防止这种情况的发生。浙江专业AOI供应无需调阈值、容忍度。

江苏不需要设置参数的AOI生产,AOI

伴随着元器件的微型化、细间距化等密度特征越来越明显,生产品质以及产能的需求不断扩增,致使产品外观缺陷检测的难度相应提升,传统的人工目视检测法将逐步被淘汰,其整体速度慢而且效率低下,且具有明显的主观性。加上产品的微小外观缺是无法用肉眼直接判别的,直观目视被测区域容易导致误差,在这种追求优良品质、高效率的需求下,传统目视检测逐渐凸显出许多的不足,因此无法满足大多数生产线上的检测要求,其使用率也将大幅减的少。

基于图像检查的基本原理是:每个具有明显对比度的图像都是可以被检查的。存在的主要问题是,当一些检查对象是不可见的,或是在PCB上存在一些干扰使得图像变得模糊或隐藏起来了。然而,实际经验和系统化测试都表明,这些影响是可以通过PCB的设计来预防甚至减少的。为了推动这种优化设计,可以运用一些看上去很古老的附加手段(这些方法仍在很多领域被推崇),它的优点包括:减少编程时间尽可能地减少误报,改善失效检查。制定设计方针,可以有效地简化检查和明显地降低生 产成本。深度学习的概念源于人工神经网络的研究。

江苏不需要设置参数的AOI生产,AOI

AI视觉在很大程度上提升了测量目标的准确性,人眼分辨识别的能力往往有限,对于极其微小的外观缺陷识别检测上具有一定的难度,甚至无法实现,但是这些不足 ,AI视觉都可以弥补,比如它对于微米级的缺陷目标检测可一步到位。人眼识别的速度与机器的速度对比也有很大的区别,人眼的识别能力使得它识别的速度被限定,AI视觉系统通过它强悍的机构驱动,快速移动扫描,搭载高精密相机,以及硬件涉施,闪速抓拍,能够完成精确快速的识别。爱为视是插件炉前错、漏、反、多等缺陷检测方案供应商。江苏不需要设置参数的AOI供应

卷积神经网络是爱为视的关键技术。江苏不需要设置参数的AOI生产

工控主机/操作系统:CPU:inteli59600KF,GPU:NVIDIA独立显卡显存:8G/6G,内存/硬盘存储:16GDDR4/2T操作系统:Ubuntu.19.2LTS64bit显示器:22寸/23.8寸FHD大视角显示器网络:千兆网卡

算法:卷积神经网络、先进深度学习模型、计算机视觉、图形图像处理、OCR等

检测内容:手插元器件的错件、漏件、极性反向、多插、歪斜、字符、条码、二维码等检测

混板模式:可支持6种机型,程序自动调用

生产的同时可编辑模板

远程调试/离线编程:支持客户离线编程、客户远程调控、远程调试

江苏不需要设置参数的AOI生产

深圳爱为视智能科技有限公司致力于机械及行业设备,以科技创新实现***管理的追求。公司自创立以来,投身于智能视觉检测设备,是机械及行业设备的主力军。爱为视不断开拓创新,追求出色,以技术为先导,以产品为平台,以应用为重点,以服务为保证,不断为客户创造更高价值,提供更优服务。爱为视创始人刘晓辉,始终关注客户,创新科技,竭诚为客户提供良好的服务。

热门标签
AOI
信息来源于互联网 本站不为信息真实性负责