浙江常用频率合成器
频率综合器使用锁相环(Phase-LockedLoop,PLL)来实现锁定输入信号和输出信号的频率。锁相环是由相频比较器、电压控制振荡器(VoltageControlledOscillator,VCO)和除频器组成的反馈控制系统。下面是频率综合器如何实现锁相环的基本步骤:输入信号与参考信号的相频比较器进行相位比较,生成一个误差信号。相频比较器检测输入信号和参考信号的相位差,并输出一个与相位差成正比的误差信号。错误信号经过滤波器进行滤波处理,以去除高频噪声和不稳定分量。经过滤波后的误差信号被送入电压控制振荡器(VCO)。频率综合器通常具有可编程的控制接口,允许用户动态地改变输出频率、相位和幅度等参数。浙江常用频率合成器
有很多技术可以降低小数分频的杂散。通常可以在分频系数变化的时候通过增加或减少鉴相器输出的电压来实现。另一种方法是使用一个允许更大的分频系数的多模分频器。在这种情况下,我们会得到大量的小幅度杂散。多模分频器往往和Delta-Sigma调制器一起使用,产生随机频率杂散并将它们推向更高的偏移频率,使其可以通过回路滤波器过滤掉。尽管存在各种改进的技术,小数分频技术的主要缺点是由小数划分机制导致的相位误差过量产生的大量杂散电平。浙江常用频率合成器频率综合器模块可以产生高精度、高稳定性的输出信号。
频率综合器的工作原理分别是:直接模拟合成法、锁相环合成法和直接数字合成法。直接模拟合成法利用倍频、分频、混频及滤波,从单一或几个参数频率中产生多个所需的频率。该方法频率转换时间快(小于100ns),但是体积大、功耗大,已基本不被采用。锁相环合成法通过锁相环完成频率的加、减、乘、除运算。该方法结构简化、便于集成,且频谱纯度高,使用比较广,但存在高分辨率和快转换速度之间的矛盾,一般只能用于大步进频率合成技术中。
在频率综合器反馈路径上使用频率转换(混频)技术可以提高频率综合器的主要特性。其主要思路是将VCO的输出在混频器和偏移频率源的帮助下转换成一个低得多的频率。在某些情况下(例如,当工作频率范围较窄时)可以完全消除分频器的反馈。在这种情况下,环路分频系数等于1,相位噪声没有发生恶化。此外,通过在反馈路径中用乘法器代替分频器可以进一步减少PLL器件的残余噪声的影响。简单的频率偏移方案的主要缺点是频率覆盖范围有限。对于一个固定的偏移频率,扩大输出频率带宽会导致混频器输出的中频频率升高。这就需要一个分频系数更大的分频器,从而使这种方法失效。为了保证分频比较小,偏移信号频率应尽量靠近射频输出频率。这可以通过使用宽带偏移信号的多环路方案来实现(图8)。 频率综合器在无线电、通信和计算机领域中使用。可应用于调制解调、时钟生成和数字信号处理等方面。
频率源是无线通信系统的重要硬件组成部分,它为射频收发系统提供本地振荡信号来完成上下变频功能,是各类型号产品中不可缺少的重要部件,而频率综合器则是实现可编程频率源的重要器件。面对弹载设备升级换代、提升竞争力的迫切需求,传统的频率源设计方式面临减体积、降成本的巨大压力。因此,研发拥有自主知识产权的宽带PLL频率综合器芯片,不仅能够有效促进系统体积减小、成本降低,也能够为系统的硬件可重构提供器件基础,更有助于实现重要技术的自主可控,对于武器系统中射频收发的微小型化设计乃至整机SoC设计的作用和意义都非常大。频率综合器可提供高功率的输出信号,适合需要驱动高功率放大器或天线的应用,例如雷达和广播发射机。浙江常用频率合成器
频率综合器可以实现高精度、高稳定性和可编程的频率合成,以满足无线电和通信系统对频率控制的要求。浙江常用频率合成器
虽然DDS工作频点接近直流,但根据奈奎斯特原理,其比较高频率只能到时钟频率的一半。虽然可以工作在高于奈奎斯特区,但是性能下降非常快。另一个严重的问题是由于DDS技术中固有的许多因素导致的较高杂散,例如数位截取、量化和DAC转换误差。DSS的形式可以是完全集成的芯片或可以使用单独的现场可编程门阵列(FPGA)和DAC芯片来实现。后者可将数字部分限制在FPGA内部,因此隔离了EMI引起的杂散。如今FPGA有足够的能力来建立相当复杂的多核相位累加器和索引表,由数位截取导致的杂散电平可忽略不计。结果主要的杂散源通常是由于DAC的非线性和量化噪声引起的。浙江常用频率合成器
上一篇: 深圳频率合成器厂家供应
下一篇: 深圳APMSYN22频综推荐厂家