上海教学光学定位系统传感器安装

时间:2021年04月28日 来源:

    所述反光板23位于镜头2的后端,所述卡板14与卡槽12相匹配,所述底座1的内部开设有与镜头2相匹配的槽口,用于对镜头2进行升降操作。工作原理:使用时,可通过滑槽13对镜头2进行升降和收纳,使用时拿出镜头2,对准信号源进行追踪,过程中镜头2进行拍照,coms感光元件24能够提供准确的拍摄调节,拍摄时可通过af自动曝光模块61对目标进行自动曝光处理,拍摄结束后通过a/d变换器,将电信号变换为数字信号,传递给数字信号处理模块42,对数字信号进行转码和译码操作,获取图片文件并存储在pc数据存储接口43插入的pc存储卡中,可通过取下pc存储卡拷贝文件进行对比即可。需要说明的是,在本文中,诸如***和第二等之类的关系术语**用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。尽管已经示出和描述了本实用新型的实施例,对于本领域的普通技术人员而言。PST使用这些标记点来识别对象位置并确定其姿势。上海教学光学定位系统传感器安装

    包括如下步骤:步骤1)输入压力容器母线长度a(m)和半径数据r(m)、摄像机垂直视场角a(rad)(或水平视场角)、摄像机ccd靶面高度b(mm)(或宽度);步骤2)求解临界角步骤3)计算出摄像机像平面单位径向长度对应的角度θ0(rad)步骤4)打开rov上的led灯;步骤5)依据从大到小的原则,调整安装在遥控平台中心的摄像机的俯仰角αrad,次数不超过其中包括(不调)和并旋转,直到亮点进入摄像机视场的中心线上,此时的旋转角即为rov的方位角;步骤6)记录亮点位置(0,y0),求出中心变量步骤7)rov的深度x(m)运用如下算法求出:本发明的***效果在于:该压力容器环境的水下rov光学定位算法,利用压力容器尺寸参数、摄像头安装位置参数和rov上的led亮光就能准确获得潜器rov的位置,方法具有科学性,探测具有全覆盖,计算实时性强。附图说明图1某核反应堆压力容器截面示意图图2某核反应堆压力容器截面摄像、rov测量示意图图3变量θ与深度x函数图图4某核反应堆压力容器截面摄像、rov测量角度示意图具体实施方式下面结合附图和具体实施例对本**进行详细描述:下面结合附图及具体实施例对本发明作进一步详细说明。一种应用于压力容器环境的水下rov光学定位算法,包括如下步骤:对于形如图2的压力容器。福建科研光学定位系统定位系统极少数不设置Mark点也可以,操作非常麻烦,需要使用几个焊盘或孔作为mark点;

    一种是进入iBeacon区域后,进行消息推送;另一种是部署好基站,利用信号强度进行定位。这两种都与位置感知有关。iBeacon进行位置感知的依据是其信号强度RSSI,通过RSSI值的变化来判断用户距离iBeacon设备的远近。如已知某距离(1米)的RSSI,那么大于该值则距离小于1米,小于该值则距离大于1米。通过部署多个基站,则可以通过与两个或多个基站的相对距离来找到用户的位置大致区域。基于蓝牙的室内定位优点在于设备体积一般比较小,功耗低,建立连接时间短,主要可以应用于小范围的定位。缺点是需要引导用户打开蓝牙,目前这些问题在一些场景已经不算太大问题。惯性传感器定位惯性传感器包括加速度计和陀螺仪等,可测量加速度和角速度。通过对运动传感器的信息进行整合计算,不断更新待移动点的位置和速度。通过对加速度进行积分,可以知道待移动点的位置变化、速度变化,通过对角速度进行积分,可以得到移动点的方向变化。惯性传感器定位于其他方法的不同之处在于,不需要事先布置基站或对室内情况有预先了解,所以在救援人员追踪方面有重要应用,因为在这种情况下,室内的无线信号可能受到强烈干扰、基站可能无法正产工作、或救援环境未知。在无线信号难以正常运行时。

    当半径较小的半球透镜球面上接收到入射光线b时,在球内发生折射,生成折射光线c,后经过半径较大的半球透镜的球面上反射层的反射后,生成反射光线d。光线d又在半径较小的半球透镜的球面上发生折射,生成出射光线e。根据逆向反射标记物的特性,光线e和光线b互相平行。光线a关于半透射镜4对称的虚拟光线,其相当于是从感测装置5发出的,经过逆向反射标记物2的反射后又沿原方向返回到感测装置5。可以根据具体的要求来确定具体采用上述哪种相对位置。感测装置5感测到光斑后,计算装置6可以计算出光斑中心的位置,即为逆向反射标记物相对于感测装置的位置。确定高斯分布的光斑的中心位置,例如可以采用拉普拉斯-高斯差分算法。在又一实施例中,计算装置6还可以用于根据逆向反射标记物相对于感测装置5的位置和感测装置5相对于世界坐标系的位置,计算逆向反射标记物相对于世界坐标系的位置。具体地,计算装置6可以根据单目立体视觉算法或多目立体视觉算法(例如,solvepnp算法)计算逆向反射标记物相对于世界坐标系的位置。本公开的光学定位系统中还可以包括多个感测装置5,多个感测装置5可以设置在一个刚体上。当光学定位系统中包括两个以上感测装置5时。以及一分析单元.该多个光源分别设置于一目标物上多个目标点;

    基于WiFi的定位技术主要有三种,第一种是基于接收信号强度的三边测量定位(接收信号强度定位法),这也是现在业界应用**多的技术。接收信号强度定位法是通过信号强度和已知信号衰弱模型来估计参考点与待测点的距离,根据多个参考点距离待测点的距离值画出圆,多个圆的重叠部分就是待测目标的位置。它的优点是布局和维护成本相对低,只需要采集WiFi热点的位置数据库,局限是给出的定位精度低,大概能得到10~20m的精度,有些情况可能更低。第二种是基于接收信号强度的指纹定位。该技术是将测量到的接收信号强度与前期测量的各个参考点的信号强度特性进行比较,选取匹配**好的参考点位置来作为测量目标的位置。现有很多解决方案也是专注在该技术。该技术的优势是定位精度高,可以达到3~5m的精度,缺点是布局和维护的成本较高,系统依赖射频信号强度的指纹数据库,对于大规模的使用,数据库大,产生和维护成本相对较高,也在一定程度上造成可移植性差。第三种是基于信号飞行时间的测量,通过测量无线信号在两个节点之间的往返飞行时间,并用该时间推算节点间的距离,根据多个参考点距离待测点的距离值画出圆,多个圆的重叠部分就是待测目标的位置。它的优点是精度高。用来提供波长在多个预定范围内的光线.该图像***用来侦测该多个光源的光学信號以产生相对应的多个图像.浙江游戏光学定位系统专业技术

以毫米精度对目标物的3D位置和方向(姿态)进行光学定位,从而确保无线操作。上海教学光学定位系统传感器安装

    现有的单一定位技术很难满足不同的精度和环境动态特性所带来的可靠性要求。其次,从提高覆盖的角度,现有的技术基本上都依赖定位数据库,而数据库的产生大多依赖人工的现场勘测,这样带来的布局和维护成本很高。**后一点,从用户体验的角度,要求所采用的定位技术功耗低,不增加额外成本。室内定位技术已经有了很多发展,提出了各种解决方案。这些解决方案各存在不同的优势,同时也有各种局限,从而使单一的技术不能满足以上所提出的这些挑战。当前室内定位技术的发展趋势是采取多种技术的融合,以达到充分发挥单一技术的优势,并相互弥补不足,从而满足不同的要求所提出的技术挑战,达到**优的解决方案。接下来会介绍现有的不同定位技术,并分析它们的优势和局限,**后讨论室内定位领域的新发展趋势。图1介绍了现有的一些定位技术和他们的性能特点。下面对其中几种常用于室内定位的技术做出简要的介绍。基于WiFi的定位技术:WiFi芯片在各种手机和移动设备上已经普遍应用,而且其基础热点设施的室内覆盖也非常好,很多需要定位的公共场所如机场、商场都有覆盖,所以WiFi用于室内定位成为很自然的选择,很多现有的解决方案都是主要基于WiFi技术。上海教学光学定位系统传感器安装

上海青瞳视觉科技有限公司是一家专注于红外光学位置追踪系统及虚拟现实平台研发的高科技企业,成立于2015年8月,公司位于上海大学科技园内,是国内光学动作捕捉系统生产商之一。公司由一支高素质的研发团队组建,主要成员来自于中科院自动化所、上海交通大学等国内**高校且具有多年研发经验。目前公司具有完全自主知识产权、自行生产的光学动作捕捉设备和软件,成功研发并推出CMTracker动作捕捉、IQFace表情捕捉、VirtualHand手势捕捉、SLAM定位、VRWizard虚拟仿真平台等产品。系统服务于虚拟现实主题乐园,影视,游戏等泛娱乐等文化产业,也可应用于医疗、运动分析、工业仿真、机器人、无人机等领域。在VR和AR技术影响世界科技创新浪潮之际,团队专注于交互方案研究,为客户提供稳定,满意的交互方案。

信息来源于互联网 本站不为信息真实性负责