浙江CeYAG晶体服务电话

时间:2021年08月28日 来源:

研究Ce:YAG闪烁晶体中Ce离子分布特征,对研究YAG闪烁晶体的性能及其应用具有重要的现实意义。值得注意的是,优良高温闪烁晶体Ce:LSO和Ce:LuAP也同样遭遇铈离子发光中心分布不均匀的问题。所以,研究Ce离子在YAG晶体中的分凝问题对其它高温闪烁晶体的研究具有借鉴作用。另外,由于Ce离子分凝系数小,通常在提拉法生长Ce:YAG晶体的后期往往会产生组分过冷而严重影响了Ce:YAG晶体的质量。因此,探索其它的高温闪烁晶体的制备方法也具有重要的意义Ce:YAG闪烁晶体主要用在哪里?浙江CeYAG晶体服务电话

铈离子掺杂氧化物和硫化物闪烁晶体与卤素化合物晶体相比,氧化物晶体具有优良的热力学性能以及稳定的化学性质等优点。因此,铈离子掺杂的无机氧化物闪烁晶体包括铝酸盐、硅酸盐、硼酸盐以及磷酸盐等晶体受到人们的极大重视并被普遍研究[9]。表1-8总结了铈离子掺杂氧化物闪烁晶体的基本闪烁性能[9]。从表中可以知道,多数铈离子掺杂的氧化物闪烁晶体具有高光输出和快衰减等特征,尤其是铈离子掺杂的铝酸盐和硅酸盐闪烁晶体具有诱人的闪烁性能,如Ce:YAP,Ce:YAG,Ce:LSO和Ce:LuAP等无机闪烁晶体,被誉为新一代高性能无机闪烁晶体110方向CeYAG晶体原料TGT-Ce:YAG的主要缺陷是什么?

Ce:YAG晶体存在的主要问题除了熔点温度高(1970oC)外,Ce:YAG晶体中存在的主要缺点是Ce离子在晶体中的分布不均匀,主要是由于Ce3+(0.118nm)和Y3+(0.106nm)离子的半径相差较大,其分凝系数较小(~0.1)造成的。发光中心分布在晶体中分布不均匀将会导致探测元件闪烁性能的差异,在一定程度上降低了闪烁探测器的整机性能。研究表明[101],Ce:YAG晶体的闪烁性能对Ce3+离子浓度有较强的依赖关系。下列图表分别表示了Ce:YAG闪烁晶体的光输出和衰减常数(快成分与慢成分)随Ce离子的浓度的变化关系。从表1-12中可以看出随着浓度的增加(0.012%-0.21%),Ce:YAG晶体的光输出增大(1000-1420phe/Mev),当浓度继续增加到1.08%时,其光输出又减小为1270phe/Mev。(表中所列光输出是通过比较661.6Kev能量γ射线(137Cs)全能峰的位置与单光电子峰位置获得的,采用XP2020Q光电倍增管记录[101])。

众所周知,钇铝石榴石(Y3Al5O12或YAG)单晶体是优良的激光基质材料以及光学衬底材料,例如,Nd:YAG和Yb:YAG激光晶体已经广泛应用于工业、**医疗、以及科研等领域。特别是近二十年来,随着LD泵浦固体激光器的迅猛发展,国际上对Yb:YAG激光晶体又掀起研究高潮,出现了大量的文献报道[94][95]。早期为了发展可调谐激光晶体,人们研究了Ce:YAG晶体的光学特性,由于存在严重的激发态吸收,使得Ce:YAG的研究停滞不前[96][97]。尽管1967年,Blasse已经发现Ce:YAG荧光粉[98]具有优良的闪烁性能,但是对其单晶的研究并没有受到足够的重视。一直到1992年[99],Ce:YAG晶体才被提出用作闪烁材料而引起人们的兴趣。接着,Moszynski[100]和Ludziejewski[101]等人分别于1994年和1997年对Ce:YAG晶体的闪烁性能进行了较为系统的研究,并指出Ce:YAG晶体具有优良的闪烁性能。Ce:YAG具有快衰减以及在550nm发射荧光,使得它可以应用于中低能量γ射线α粒子的探测等领域[102]。目前,Ce:YAG高温闪烁晶体业已商品化,主要用于扫描电镜(SEM)的显示部件,其生长方法主要为提拉法。

另外,近年来, Ce:YAG单晶薄膜荧光屏[103],以及Ce:YAG陶瓷[104][105]等闪烁体由于有其独特的优势也备受人们的关注。 Ce:YAG晶体作为闪烁材料引起人们的注意则是在1992年[81]。

Ce:YAG高温闪烁晶体不但具有闪烁性能,而且具有良好的光脉冲分辨射线和粒子的能力,能与硅光二极管有效耦合,耐高温不潮解,可在极端条件下应用。因此,用Ce:YAG与硅光二极管耦合制成的闪烁探测器可普遍应用于低能射线、粒子等轻带电粒子的探测等核物理实验。此外,Ce:YAG单片机还可以作为扫描电子显微镜的显示元件,在大规模集成电路的检测中有着重要而普遍的应用。另外,与CsI:Tl闪烁晶体相比,Ce:YAG闪烁晶体响应小,光衰减快,在小于500Kev的能量范围内不潮解,有望部分替代CsI:Tl闪烁晶体。表1-11比较了Ce3360 YAG和CsI:Tl闪烁晶体的主要闪烁特性。CeYAG与CeYAP的区别是什么?江西高浓度CeYAG晶体

后期热处理是*次于晶体生长过程的对Ce: YAG发光性能有关键影响的因素。浙江CeYAG晶体服务电话

衰减时间测量我们主要采用同济大学物理系自行设计的脉冲X射线激发荧光寿命谱仪。该装置采用时间关联的单光子延迟法,能够同时产生两路信号,一路直接或间接(能够产生快时间触发)作为仪器的起始信号,另一路激发样品发光,由探测器探测作为仪器的终止信号。光源部分主要由Hamamatsu PLP-01 光脉冲控制器、LDH065激光器及N5084光激发X射线管组成。激光的脉冲宽度为98 ps,时间偏差为正负10 ps,重复频率从DC(直流)到10 MHz连续可调[94]。实际产生的X射线的脉冲宽度约为113 ps,优于北京同步辐射的脉冲宽度160 ps[95]。仪器时间分辨率为0.95 ns左右。

我们的 Ce: YAG(TGT)样品采用其他方法测试。其中激发源采用皮秒-纳秒脉冲产生器,基本工作原理是加速电子打到金属靶上而产生X射线轫致辐射,其平均能量大概在零点几MeV。由光电倍增管探测光信号,并用电流型瞬态方法研究其时间响应特性。

根据固体发光理论,材料的理想发光衰减时间谱一般可写成一个或几个指数衰减成分的迭加

                                    浙江CeYAG晶体服务电话

信息来源于互联网 本站不为信息真实性负责