湖南多色荧光寿命成像研发

时间:2022年06月08日 来源:

荧光寿命成像显微术(FLIM)是一种利用荧光染料固有特性的成像技术。除了具有特有的发射光谱外,每个荧光分子还有特有的寿命,它反映了荧光基团在发射光子之前处于激发态的时间。除了标准的荧光强度测量外,寿命分析还可以提供其他信息。过去,寿命成像一直是一种缓慢、复杂的专业化技术。只有经验丰富的显微镜**或物理学家才会使用这种技术。荧光寿命成像提供了额外的信息,有助提高共聚焦成像的质量。它非常适合用于区分荧光发射光谱重叠的荧光探针,或消除不需要的背景荧光信号。荧光寿命成像(FLIM)对细胞信号传导及调控,蛋白间的相互作用等生物研究发挥着很大作用。湖南多色荧光寿命成像研发

荧光寿命成像分析:荧光寿命是用于几种生物测定的稳健参数。它有可能替代传统的测量技术,如吸收法、冷光法或荧光强度法3。荧光团物理化学环境的任何变化都会导致荧光寿命的改变。可通过各种机制来研发基于寿命的分析,例如简单的结合测定,涉及到两个组分的结合(一个被荧光标记)而引起FLT的变化。另一种机制是猝灭释放型测定,涉及大量过量存在的猝灭物质,其具有低而有限的荧光。一旦荧光化合物被释放(通过酶促反应或与互补DNA结合),系统的寿命就会改变。FLT可与FRET(荧光共振能量转移)分析结合用于能量转移效率测量。广东植物荧光寿命成像采购荧光寿命成像不需要考虑跳色的影响,从而免去了计算和去除跳色杂质信号的麻烦;

荧光寿命成像可以提供荧光强度(光子数)和光子寿命的空间分布,具有200 nm的空间分辨率和皮秒量级的时间分辨率。通过双光子激发(结合飞秒脉冲和共焦显微镜)可以直接检测荧光和时间分辨的荧光寿命。这种无损检测技术,无需解剖或专门制造分层样品,不但可在样品表面,还可在样品表面以下实现深度解析测量。特别适用于新材料、光子学、光伏、光催化、生物材料、纳米材料和纳米复合材料以及其相关的原理探究和设计优化。荧光寿命成像图像中每一个像素点在phasor图上都有一个对应的点。因此我们可以获取每个像素点的寿命信息,也可以获知每一寿命所对应的图像区域。

荧光寿命可以在频域或者时间域测量。时间域测量方法涉及用短光脉冲照射样品(比色皿、细胞或组织),然后随时间测量发射强度。FLT由衰减曲线的斜率确定。有几种荧光检测方法可用于寿命测量,其中时间相关单光子计数(TCSPC)可实现简单的数据收集和增强的定量光子计数。频域方法涉及高频率入射光的正弦调制。在该方法中,发射发生在与入射光相同的频率处,并且随着激发光兼有相位延迟和振幅的变化(解调)。寿命测量不需要波长比率探针来提供众多分析物的定量测定。寿命法通过使用光谱位移探针扩展了分析物浓度范围的灵敏度。寿命测量可用于没有直接探针的分析物。包括葡萄糖、抗原或基于荧光能量转移转导机制的任何亲和力或免疫测定。荧光寿命成像通常用于研究生物分子间相互作用、细胞中的信号事件或区分光谱重叠的荧光团。

在使用TCSPC测量荧光寿命的过程中,需要调节样品的荧光强度,确保每次激发后较多只有一个荧光光子到达终止光电倍增管。TCSPC方法的突出优点是灵敏度高、测量结果准确、系统误差小。采用该技术对样品进行荧光寿命成像时,必须逐点测量样品的荧光寿命,而每一点的测量时间又比较长,因此,通常认为该技术不太适合荧光寿命测量。不过,近年来,随着TCSPC技术和固体超快激光技术的发展,TCSPC技术已具备快速测量荧光寿命的条件。通过与激光共聚焦显微镜的结合,可以对样品进行荧光寿命成像的测量。随着技术的发展,在显微镜视野内进行超快速全像素荧光寿命信号采集的荧光寿命成像成为可能。湖南多色荧光寿命成像研发

市场上荧光寿命的测量方式可分为时域法和频域法。湖南多色荧光寿命成像研发

荧光寿命成像显微技术已在生命科学,临床荧光寿命领域中得到了普遍的应用。成像,扩散光学层析成像,荧光相关光谱等等。使用我们专有的多维时间相关单光子计数技术(TCSPC),我们的FLIM和TCSPC系统具有超高光子效率的特点。因此,科学家,医生,研究人员和其他用户能够进行TCSPC FLIM显微镜检查,多波长FLIM,同时FLIM和快速获取FLIM。生命科学是我们荧光寿命成像显微(FLIM)设备的主要应用领域。我们的技术经常用于以下领域:分子影像学、代谢成像、FRET成像、同时进行NAD(P)H和pO2成像。湖南多色荧光寿命成像研发

上海波铭科学仪器有限公司属于仪器仪表的高新企业,技术力量雄厚。公司致力于为客户提供安全、质量有保证的良好产品及服务,是一家有限责任公司(自然)企业。以满足顾客要求为己任;以顾客永远满意为标准;以保持行业优先为目标,提供***的拉曼光谱仪,电动位移台,激光器,光电探测器。波铭科仪将以真诚的服务、创新的理念、***的产品,为彼此赢得全新的未来!

信息来源于互联网 本站不为信息真实性负责