先进直线电机机器人

时间:2021年02月19日 来源:

    ***齿轮210的侧面(没有齿的一面)与第二齿轮220的侧面固定连接,固定连接的形式可以是一体成型,也可以是焊接。本说明书一个或多个实施例所示的驱动机构10可以实现在驱动对象300的运动行程相同的情况下,减小直线电机的动子110的运动行程,使带动驱动对象300运动相同行程所需要的动子110的长度更短,进而使得整体结构沿驱动对象运动方向的尺寸更小、结构更紧凑。图3是本说明书一些实施例所示的多叶光栅装置的整体结构尺寸的示意图。参照图3所示,在一些实施例中,所述直线输出组件100的输出运动方向与所述驱动对象300的直线运动方向平行。其中,直线输出组件100以直线电机为例,驱动对象以多叶光栅装置的叶片为例进行详细说明。在一些实施例中,直线输出组件的输出运动方向可以理解为直线电机定子的运动方向;驱动对象的运动方向即为叶片的运动方向。具体的,当直线输出组件100的直线输出的运动方向与所述驱动对象300的直线运动方向平行时,驱动对象沿运动方向(例如,方向x)所占用的尺寸l即多叶光栅装置的整体结构尺寸相当于直线输出组件100的运动行程s1、驱动对象300的运动行程s2以及驱动对象300与直线输出组件100的静态长度l1的总和,即l=l1+s1+s2。其中。零驱动模式带来了旋转电机原有驱动方式无法达到的性能指标和优点。先进直线电机机器人

    尽管该方法同样适用于二维和三维轴对称几何,但对三维几何来说更复杂一些。在本篇博客文章中,我们不讨论定制的三维线性周期性边界条件。物理场II:移动网格为模拟直线运动,先要添加移动网格接口。对定子域(及该侧的空气域)指派一个固定网格。同时使用z-向的指定变形以及上一个解析函数定义的指定运动来模拟滑块部位。模拟管式发电机时使用的移动网格物理场接口及其关联功能部件设置。网格剖分:在应用周期性边界条件的边上,源边和目标边所含网格数应当相同。为此,需要应用复制边功能部件。另外,对已设置了手动连续性边界条件的边界,“广义拉伸”算子可对其应用较细化的网格。求解器设置和仿真结果要设置正确的求解器以获得仿真结果,需要注意以下几点。首先,添加“稳态”研究步骤,以计算静态永磁体内部和周围的矢量势场。此静态解用作初始条件后,接下来求解“瞬态”研究步骤。这一步计算由作直线移动的滑块和三相线圈中的感应电压而产生的瞬态响应。因为该问题已在时域中求解,且模型中包含了非线性磁性材料,因此必须对非线性瞬态求解器作微调。非线性求解器的设置与这一技术支持知识库条目中建议的设置相似。管式发电机的非线性求解器设置。该模型求解用时s。机器人关节直线电机高性价比的选择直线电机模组平台发展至今,已经被广泛应用到各种各样的设备中。

    该模型可用于优化研究或参数化扫描研究。参数已定义在全局定义>参数下,如下方屏幕截图所示。可以从案例下载中下载这里描述的管式发电机示例。建立管式发电机模型所用的参数列表。该模型几何旨在将定子零件和滑块零件创建为**的几何体。随后这两个零件通过形成装配组装完成,由此在该接口中,定子和滑块间自动创建了一致对。同时添加移动网格,以模拟滑块的运动。注:这里,我们在定子和滑块间添加了1毫米的额外间隙。由此重叠边界清晰可见,以应用定制的线性周期性边界条件。这条间隙纯粹为增强可视化效果而建,不会对结果(即电压输出或电磁力)产生任何影响。物理场I:磁场磁场接口用于模拟管式发电机的电磁场。定子和滑块中的非线性材料使用“安培定律”节点进行模拟,同时“本构关系”设置为“HB曲线”。设置“安培定律”节点,描绘非线性磁性区域“HB曲线”的实现。三相绕组使用磁场接口中的多匝线圈功能部件进行模拟。三个相位的设置都相同。下方*显示第三相的设置。每个相位的绕组包含100匝金属线,截面积为1e-6[m^2],电导率为6e7s/m。三个相位都设为开路(即零电流),以计算线圈中的感应电压。“多匝线圈”功能部件显示开路设置。

    直线输出组件垂直于驱动对象的运动方向可以理解为直线输出组件的直线运动方向与驱动对象的运动方向垂直。下文将通过图示进行详细阐述。图5a和5b是本说明书一些实施例所示的直线输出组件运动方向与驱动对象运动方向垂直的示意图,其中,5a和5b是不同角度展示的示意图。如图5a、图5b所示,在一些实施例中,所述直线输出组件100的输出运动方向与所述驱动对象300的直线运动方向垂直。具体的,叶片的运动方向为直线x所在的方向,直线电机的动子110运动的方向为直线y所在的方向,其中,直线y方向与直线x方向垂直。图5a和图5b*作为一种实施例,直线输出组件100设置在驱动对象的运动方向的侧边后侧方,在其他实施例中,也可以把直线输出组件垂直地布置在驱动对象的运动方向上,都可以实现减小叶片及其驱动装置沿运动方向的占用尺寸。参考图5a,在一些实施例中,直线电机设置在叶片沿其直线运动方向的上侧,从图5a来看,直线输出组件与驱动对象在所述运动方向(图5a中方向x)上的投影完全重合,即直线输出组件在所述运动方向上不占用尺寸。具体的,参照图5b所示,叶片与直线输出组件之间设置有传动组件(例如,齿轮组件),其中,传动组件包括大齿轮或第二齿轮220,小齿轮或***齿轮210。管式电机的另一个优势是,没有定子端部绕组。

    但事实是,直线电机驱动在普遍使用后,一些过去没有关注的问题开始浮现:一是直线电机的耗电量大,尤其在进行高荷载、高加速度的运动时,机床瞬间电流对车间的供电系统带来沉重负荷;其二是振动高,直线电机的动态刚性极低,不能起缓冲阻尼作用,在高速运动时容易引起机床其它部分共振;其三是发热量大,固定在工作台底部的直线电机动子是高发热部件,安装位置不利于自然散热,对机床的恒温控制造成很大挑战;其四是不能自锁紧,为了保证操作安全,直线电机驱动的运动轴,尤其是垂直运动轴,必须要额外配备锁紧机构,增加了机床的复杂性。在直线电机的应用中,人们除了发现上述缺陷外,也看到了其优点的片面性。直线电机的主要优点是高速度和高加速度,但在机床加工过程中,加速度超过10m/s2时所节省的辅助时间对整个加工过程的工时来说并没有太大意义,只有在工时非常短的加工中,高加速度才有意义,也就是说对于模具、风叶等单件复杂零件的切削加工,直线电机的优点并不明显。导致全部反馈控制系统的动态相应性能大幅提升,相应非常灵敏和快速。静安区直线电机***轴承

直线电机结构简单,不需要经过中间转换机构而直接产生直线运动,运动惯量减少,响应性能和定位精度提高。先进直线电机机器人

    负载直接连接到直线电机上。5、零磨擦直线电机可以实现无接触传递力,机械摩擦损耗几乎为零,所以故障少,免维修,因而工作可靠、寿命长。◆采用THK直线导轨,精度高、寿命长、摩擦小、运行平稳◆重复精度可达±1um博扬直线电机平台使用直线电机直接驱动,提供大的推力,以满足对速度、加速度、高精度的要求。设计有防护装置,光栅尺反馈系统、线性滑轨、极限开关等都能得到有效防护。可采用无/有铁芯直线电机,平台无背隙,并具有高动态特性,维护简单。使用范围:主要用于电子行业、研磨类机床、医疗、工具机、印刷、激光焊接行业等行业。博扬直线电机平台包含驱动器,提供平**整的解决方案,根据客户安装条件、运动要求,我们提供满足高平稳、高精度要求的现场调试服务。以上就是关于直线电机的内容介绍,更多《直线电机研发生产》详情,可以在线咨询博扬智能客服,我们将竭诚为您服务。博扬智能15年专注代理德国倍加福传感器和日本藤仓气缸等国际自动化品牌产品,在新能源和医疗设备等机械制造行业积累了丰富的应用经验。直线电机模组与线性模组的区别。虽然直线电机模组和直线电机模组只有一个词的区别,但实际上两者之间有很大的区别。先进直线电机机器人

苏州悍猛传动科技有限公司致力于机械及行业设备,是一家生产型的公司。公司自成立以来,以质量为发展,让匠心弥散在每个细节,公司旗下谐波减速机,机器人用谐波减速机,谐波传动,工业机器人传动深受客户的喜爱。公司秉持诚信为本的经营理念,在机械及行业设备深耕多年,以技术为先导,以自主产品为重点,发挥人才优势,打造机械及行业设备良好品牌。苏州悍猛传动科技凭借创新的产品、专业的服务、众多的成功案例积累起来的声誉和口碑,让企业发展再上新高。

信息来源于互联网 本站不为信息真实性负责