天津立体绿化黑绵土工程

时间:2022年08月05日 来源:

    在对有机基质的研究中,泥炭虽不宜单独作为无土栽培基质使用,但以其能增加细质基质的渗透性,使基质更疏松、透气性更好、降低容重、提高根系的穿透能力、增加土壤的缓冲能力、增加微生物活性和养分的慢释放源、提高某些元素如铁和氮的可利用性的杰出特性,在诸多基质中脱颖而出,成为无土栽培的优先基质。高生银、邵蓓蓓对山茶花进行无土栽培试验研收稿日期:2001—0506作者简介:胡杨(1966~).男,甘肃省靖远县人。究其适宜的基质配方,从中筛选出了蛭石泥炭一2:l,蛭石/河沙/泥炭一l0:5:l两种适宜基质;陈发棣等用不同电导率和不同pH值的营养液对栽培在砻糠灰/珍珠岩一l:l、碎石细沙一l:l、泥炭,,/珍珠岩一l:l以及园土(CK)4种基质中的中国石竹进行浇灌栽培,结果表明基质泥炭/珍珠岩一l:1l陛能比较好一;德国科学家用沙/泥炭、沙/腐殖质以及沙/泥炭/腐殖质3种栽培基质作为处理对草坪草进行研究发现,泥炭能明显促进运动场草坪根系发育,腐殖质虽对其也具有益作用,但不能取代泥炭的作用;另外,在无土草皮生产中,泥炭也是常用的栽培基质之一。 可**安装的,采用全自动灌溉的垂直绿化系统,实现全程计算机管理,模块可以方便的移动替换和维护修理。天津立体绿化黑绵土工程

    Ⅰ类基质:具有高度水分有效性和高通气,其有效水体积大于25%,空气体积大于>25%。这种基质特性虽然易于从藓类泥炭调制获得,但也可以通过多种原料调制得到上述优良性状。这种理想基质的优点在于水分管理方便,限制因素少。Ⅱ类基质:具有较高水分有效性和较弱通气性。由于基质颗粒较细,因此比Ⅰ类基质持水性更强。该类基质的主要缺点是有阻断植物根系氧气供应的潜在风险,强分解泥炭和草本泥炭就是典型例子。Ⅲ类基质:具有低水分有效性和高通气。此类基质如果单独用,需要频繁的低剂量灌溉。因此,这种基质需要混合Ⅰ类基质和Ⅱ类基质,以便改进其通气性。许多有机、矿物基质原料具有这些特征,如树皮(新鲜的和发酵的)树木纤维、珍珠岩和火山灰。Ⅳ类基质:具有高水分有效性、低水分缓冲性。这类基质的纤维内部含水很少或基本没有,水主要储存在颗粒接触点附近。这些颗粒结构材料包括岩棉、木纤维等。基质对分吸持能量太小,导致水分布不规则,在栽培容器中上部基质中具有极高的气水比,而在栽培容器的底部气水比则极低。因为此类基质水分有效性高,但缓冲容量极低,所以需要持续灌溉供水。 安徽垂直黑绵土吧无土栽培的劳动显得更加高科技,省去了大量的人工。

    解决基质憎水性的办法有2个:一是基质中添加表面活性物质,降低基质颗粒的润湿角。这样在干燥的基质再润湿时,可以比较快地湿润,保证基质应用的正常进行。第二,是在基质生产过程、运输和储存过程中,保持基质合理的湿度,避免基质过度干燥,就不会造成基质吸水性能地下降。但是,如果保持基质的湿度就会增加基质的重量,提高运输成本,增加用户负担。虽然基质计量以体积为单位,适当提高基质湿度,不会造成产品质量事故发生,但基质生产、储备、运输、销售过程中,基质水分不可避免散失,仍然会直接影响基质的使用效果。作为基质生产者,为了基质使用效果和育苗的安全,就不得不使用润湿剂。为了解决基质憎水矛盾,影响基质吸水效率,目前多数基质企业都采取向基质中添加润湿剂方式予以解决,效果也非常理想。

    了解基质中基质吸力与空气容积、有效水容积、缓效水容积和无效水容积的关系,是基质调制技术的基础。要科学调制基质,还必须研究不同分解度、不同颗粒粒径对基质不同孔隙形成的影响,以便合理利用各种基质原料,合理调配不同粒径的不同原料,达到获得理想水气指标的目的。不同分解度泥炭具有不同的空气体积、有效水体积和缓效水体积。分解度越高,泥炭颗粒越细,空气体积越少,通气性变差,缓效水体积增加的越多。同样分解度的泥炭,弱分解藓类泥炭比强分解泥炭具有更好的物理性状,水分吸持能力强,通气能力大.泥炭颗粒粒径不同,对水的吸持能力和通气能力也有较大影响。从表2可见,不同泥炭粒径的基质吸水和通气容量差异明显。泥炭颗粒越大,基质的空气空隙越高,有效水分随之降低,缓效水量变化不大。 目前的花卉栽培多数园林绿化企业采取了塑料大棚的模式。

    目前,可移动模块式绿化的形式多样、功能各异,绿化空间已拓展到各种需要的场所。在国内,如2010年世博会主题馆、宝钢大舞台、法国馆、加拿大馆等,都运用移动式绿化模块营建植物墙。这一绿化模式,理念新颖,技术先进,世博结束后,其在各大城市得到推广应用,尤其在临时性或重大节庆时,如2011年上海世界游泳锦标赛、南京中山陵纪念辛亥**100周年、杭州庆国庆“西湖欢迎您”等。这种易调配、易组装并可快速成景的移动式绿化模块已成为美化环境、装点空间、衬托气氛的优先绿化形式。在国外,如日本在2005年爱知世博会上,就建有当时世界上比较大的绿墙——“生命之墙”,当前日本主要由企业进行垂直绿化成套技术的研发与应用。再如法国,竖向空间的模块式绿化拥有成熟的技术,应用普遍,供垂直绿化选择的植物种类丰富,且以当地原生植物为主。模块式绿化将容器栽培、介质配制、自动浇灌与特殊适生植物整合为景观优美、生态自然、低碳节水的绿化装置,并已形成了相当规模的新型产业。可移动的模块式绿化,着实是风景园林学科绿化技术的创新,并促进城市绿化建设及相关新型企业的发展。 种植模块使用较灵活,适用性较强,维修费用很低,可用于多种气候区。福建关于黑绵土做法

无土栽培可以通过架空等形式为植物栽培腾出更多空间,从而提高了空间利用效率。天津立体绿化黑绵土工程

    生产上经常遇到基质水分偏干,使用时无法吸水,影响育苗和栽培工作的进行。导致基质不在吸水的主要原因是基质润湿性质改变。基质原料润湿性是指原料干燥后的再润湿能力,这是基质的重要性能。基质蒸发作用或者根系吸收散发消耗水分后,基质变干,能否重新吸水取决于基质吸收水分效率。基质润湿性可以用水滴浸润时间(WDPT)的定性属性来表述,也可以用水滴在固体表面的接触角来定量表示。一般来说,水滴在固体材料表面的接触角小于90°时,这种材料就可以称为亲水材料,即水可浸润的,对水有强烈亲和力。当接触角大于90°时,这种材料就可以称为憎水材料,即与水平行,对水几乎没有亲和力。无机矿物材料一般都具有明显的亲水特征,而大多数有机材料除椰糠外大多是憎水的,这些有机材料在过度干燥后,因为改变了表面润湿活性,就具有了憎水特征。高降解藓类泥炭干燥后比弱分解藓类泥炭的憎水性更强。在众多导致基质憎水特征的因素中,基质生产过程中原料干燥和不良灌溉习惯是导致基质憎水的主要原因。 天津立体绿化黑绵土工程

信息来源于互联网 本站不为信息真实性负责