防水膜厚仪产品使用误区

时间:2023年11月18日 来源:

    针对微米级工业薄膜厚度测量,研究了基于宽光谱干涉的反射式法测量方法。根据薄膜干涉及光谱共聚焦原理,综合考虑成本、稳定性、体积等因素要求,研制了满足工业应用的小型薄膜厚度测量系统。根据波长分辨下的薄膜反射干涉光谱模型,结合经典模态分解和非均匀傅里叶变换思想,提出了一种基于相位功率谱分析的膜厚解算算法,能有效利用全光谱数据准确提取相位变化,对由环境噪声带来的假频干扰,具有很好的抗干扰性。通过对PVC标准厚度片,PCB板芯片膜层及锗基SiO2膜层的测量实验对系统性能进行了验证,结果表明测厚系统具有1~75μm厚度的测量量程,μm.的测量不确定度。由于无需对焦,可在10ms内完成单次测量,满足工业级测量高效便捷的应用要求。 白光干涉膜厚测量技术的研究主要集中在实验方法的优化和算法的改进上。防水膜厚仪产品使用误区

防水膜厚仪产品使用误区,膜厚仪

自1986年E.Wolf证明了相关诱导光谱的变化以来,人们在理论和实验上展开了讨论和研究。结果表明,动态的光谱位移可以产生新的滤波器,应用于光学信号处理和加密领域。在论文中,我们提出的基于白光干涉光谱单峰值波长移动的解调方案,可以用于当光程差非常小导致其干涉光谱只有一个干涉峰时的信号解调,实现纳米薄膜厚度测量。在频域干涉中,当干涉光程差超过光源相干长度的时候,仍然可以观察到干涉条纹。出现这种现象的原因是白光光源的光谱可以看成是许多单色光的叠加,每一列单色光的相干长度都是无限的。当我们使用光谱仪来接收干涉光谱时,由于光谱仪光栅的分光作用,将宽光谱的白光变成了窄带光谱,从而使相干长度发生变化。高精度膜厚仪答疑解惑该技术可以通过测量干涉曲线来计算薄膜的厚度。

防水膜厚仪产品使用误区,膜厚仪

常用白光垂直扫描干涉系统的原理示意图,入射的白光光束通过半反半透镜进入到显微干涉物镜后,被分光镜分成两部分,一个部分入射到固定的参考镜,一部分入射到样品表面,当参考镜表面和样品表面的反射光通过分光镜后,再次汇聚发生干涉,干涉光通过透镜后,利用电荷耦合器(CCD)可探测整个视场内双白光光束的干涉图像。利用Z向精密位移台带动干涉镜头或样品台Z向扫描,可获得一系列的干涉图像。根据干涉图像序列中对应点的光强随光程差变化曲线,可得该点的Z向相对位移;然后,由CCD图像中每个像素点光强最大值对应的Z向位置获得被测样品表面的三维形貌。

白光干涉测量技术,也被称为光学低相干干涉测量技术,使用的是低相干的宽谱光源,例如超辐射发光二极管、发光二极管等。同所有的光学干涉原理一样,白光干涉同样是通过观察干涉图样的变化来分析干涉光程差的变化,进而通过各种解调方案实现对待测物理量的测量。采用宽谱光源的优点是由于白光光源的相干长度很小(一般为几微米到几十微米之间),所有波长的零级干涉条纹重合于主极大值,即中心条纹,与零光程差的位置对应。中心零级干涉条纹的存在使测量有了一个可靠的位置的参考值,从而只用一个干涉仪即可实现对被测物理量的测量,克服了传统干涉仪无法实现测量的缺点。同时,相比于其他测量技术,白光干涉测量方法还具有对环境不敏感、抗干扰能力强、测量的动态范围大、结构简单和成本低廉等优点。目前,经过几十年的研究与发展,白光干涉技术在膜厚、压力、温度、应变、位移等等测量领域已经得到广泛的应用。白光干涉膜厚测量技术可以对不同材料的薄膜进行联合测量和分析。

防水膜厚仪产品使用误区,膜厚仪

    基于白光干涉光谱单峰值波长移动的锗膜厚度测量方案研究:在对比研究目前常用的白光干涉测量方案的基础上,我们发现当两干涉光束的光程差非常小导致其干涉光谱只有一个干涉峰时,常用的基于两相邻干涉峰间距的解调方案不再适用。为此,我们提出了适用于极小光程差的基于干涉光谱单峰值波长移动的测量方案。干涉光谱的峰值波长会随着光程差的增大出现周期性的红移和蓝移,当光程差在较小范围内变化时,峰值波长的移动与光程差成正比。根据这一原理,搭建了光纤白光干涉温度传感系统对这一测量解调方案进行验证,得到了光纤端面半导体锗薄膜的厚度。实验结果显示锗膜的厚度为,与台阶仪测量结果存在,这是因为薄膜表面本身并不光滑,台阶仪的测量结果只能作为参考值。锗膜厚度测量误差主要来自光源的波长漂移和温度控制误差。白光干涉膜厚测量技术可以通过对干涉曲线的分析实现对薄膜的厚度分布的测量和分析。特色服务膜厚仪厂家现货

白光干涉膜厚测量技术可以实现对薄膜的三维成像和分析。防水膜厚仪产品使用误区

    在白光反射光谱探测模块中,入射光经过分光镜1分光后,一部分光通过物镜聚焦到靶丸表面,靶丸壳层上、下表面的反射光经过物镜、分光镜1、聚焦透镜、分光镜2后,一部分光聚焦到光纤端面并到达光谱仪探测器,可实现靶丸壳层白光干涉光谱的测量,一部分光到达CCD探测器,可获得靶丸表面的光学图像。靶丸吸附转位模块和三维运动模块分别用于靶丸的吸附定位以及靶丸特定角度转位以及靶丸位置的辅助调整,测量过程中,将靶丸放置于轴系吸嘴前端,通过微型真空泵负压吸附于吸嘴上;然后,移动位移平台,将靶丸移动至CCD视场中心,通过Z向位移台,使靶丸表面成像清晰;利用光谱仪探测靶丸壳层的白光反射光谱;靶丸在轴系的带动下,平稳转位到特定角度,由于轴系的回转误差,转位后靶丸可能偏移CCD视场中心,此时可通过调整轴系前端的调心结构,使靶丸定点位于视场中心并采集其白光反射光谱;重复以上步骤,可实现靶丸特定位置或圆周轮廓白光反射光谱数据的测量。为减少外界干扰和震动而引起的测量误差,该装置放置于气浮平台上,通过高性能的隔振效果可保证测量结果的稳定性。 防水膜厚仪产品使用误区

信息来源于互联网 本站不为信息真实性负责