顺义区防水膜厚仪

时间:2023年12月23日 来源:

对同一靶丸相同位置进行白光垂直扫描干涉,图4-3是靶丸的垂直扫描干涉示意图,通过控制光学轮廓仪的运动机构带动干涉物镜在垂直方向上的移动,从而测量到光线穿过靶丸后反射到参考镜与到达基底直接反射回参考镜的光线之间的光程差,显然,当一束平行光穿过靶丸后,偏离靶丸中心越远的光线,测量到的有效壁厚越大,其光程差也越大,但这并不表示靶丸壳层的厚度,当垂直穿过靶丸中心的光线测得的光程差才对应靶丸的上、下壳层的厚度。白光干涉膜厚测量技术可以实现对薄膜表面形貌的测量。顺义区防水膜厚仪

顺义区防水膜厚仪,膜厚仪

白光干涉的相干原理早在1975年就已经被提出,随后于1976年在光纤通信领域中获得了实现。1983年,BrianCulshaw的研究小组报道了白光干涉技术在光纤传感领域中的应用。随后在1984年,报道了基于白光干涉原理的完整的位移传感系统。该研究成果证明了白光干涉技术可以被用于测量能够转换成位移的物理参量。此后的几年间,白光干涉应用于温度、压力等的研究相继被报道。自上世纪九十年代以来,白光干涉技术快速发展,提供了实现测量的更多的解决方案。近几年以来,由于传感器设计与研制的进步,信号处理新方案的提出,以及传感器的多路复用[39]等技术的发展,使得白光干涉测量技术的发展更加迅速。国内膜厚仪性价比高企业白光干涉膜厚测量技术可以应用于光学薄膜设计中的薄膜参数测量。

顺义区防水膜厚仪,膜厚仪

采用峰峰值法处理光谱数据时,被测光程差的分辨率取决于光谱仪或CCD的分辨率。我们只需获得相邻的两干涉峰值处的波长信息即可得出光程差,不必关心此波长处的光强大小,从而降低数据处理的难度。也可以利用多组相邻的干涉光谱极值对应的波长来分别求出光程差,然后再求平均值作为测量光程差,这样可以提高该方法的测量精度。但是,峰峰值法存在着一些缺点:当使用宽带光源作为输入光源时,接收光谱中不可避免地叠加有与光源同分布的背景光,从而引起峰值处波长的改变,引入测量误差。同时,当两干涉信号之间的光程差很小,导致其干涉光谱只有一个干涉峰的时候,此法便不再适用。

光具有传播的特性,不同波列在相遇的区域,振动将相互叠加,是各列光波独自在该点所引起的振动矢量和。两束光要发生干涉,应必须满足三个相干条件,即:频率一致、振动方向一致、相位差稳定一致。发生干涉的两束光在一些地方振动加强,而在另一些地方振动减弱,产生规则的明暗交替变化。任何干涉测量都是完全建立在这种光波典型特性上的。下图分别表示干涉相长和干涉相消的合振幅。与激光光源相比,白光光源的相干长度在几微米到几十微米内,通常都很短,更为重要的是,白光光源产生的干涉条纹具有一个典型的特征:即条纹有一个固定不变的位置,该固定位置对应于光程差为零的平衡位置,并在该位置白光输出光强度具有最大值,并通过探测该光强最大值,可实现样品表面位移的精密测量。此外,白光光源具有系统抗干扰能力强、稳定性好且动态范围大、结构简单,成本低廉等优点。因此,白光垂直扫描干涉、白光反射光谱等基于白光干涉的光学测量技术在薄膜三维形貌测量、薄膜厚度精密测量等领域得以广泛应用。白光干涉膜厚测量技术可以应用于不同材料的薄膜的研究和制造中。

顺义区防水膜厚仪,膜厚仪

薄膜作为一种特殊的微结构,近年来在电子学、摩擦学、现代光学得到了广泛的应用,薄膜的测试技术变得越来越重要。尤其是在厚度这一特定方向上,尺寸很小,基本上都是微观可测量。因此,在微纳测量领域中,薄膜厚度的测试是一个非常重要而且很实用的研究方向。在工业生产中,薄膜的厚度直接关系到薄膜能否正常工作。在半导体工业中,膜厚的测量是硅单晶体表面热氧化厚度以及平整度质量控制的重要手段。薄膜的厚度影响薄膜的电磁性能、力学性能和光学性能等,所以准确地测量薄膜的厚度成为一种关键技术。白光干涉膜厚测量技术可以应用于光学通信中的薄膜透过率测量。天津高频膜厚仪

白光干涉膜厚测量技术的精度可以达到纳米级别。顺义区防水膜厚仪

根据以上分析可知,白光干涉时域解调方案的优点是:①能够实现测量;②抗干扰能力强,系统的分辨率与光源输出功率的波动,光源的波长漂移以及外界环境对光纤的扰动等因素无关;③测量精度与零级干涉条纹的确定精度以及反射镜的精度有关;④结构简单,成本较低。但是,时域解调方法需要借助扫描部件移动干涉仪一端的反射镜来进行相位补偿,所以扫描装置的分辨率将影响系统的精度。采用这种解调方案的测量分辨率一般是几个微米,达到亚微米的分辨率,主要受机械扫描部件的分辨率和稳定性限制。文献[46]所报道的位移扫描的分辨率可以达到0.54μm。当所测光程差较小时,F-P腔前后表面干涉峰值相距很近,难以区分,此时时域解调方案的应用受到限制。顺义区防水膜厚仪

信息来源于互联网 本站不为信息真实性负责