国产膜厚仪生产商
在白光干涉中,当光程差为零时,会出现零级干涉条纹。随着光程差的增加,光源谱宽范围内的每条谱线形成的干涉条纹之间会发生偏移,叠加后整体效果导致条纹对比度降低。白光干涉原理的测量系统精度高,可以进行测量。采用白光干涉原理的测量系统具有抗干扰能力强、动态范围大、快速检测和结构简单紧凑等优点。虽然普通的激光干涉与白光干涉有所区别,但它们也具有许多共同之处。我们可以将白光看作一系列理想的单色光在时域上的相干叠加,而在频域上观察到的就是不同波长对应的干涉光强变化曲线。白光干涉膜厚测量技术可以应用于不同材料的薄膜的研究和制造中。国产膜厚仪生产商
薄膜在现代光学、电子、医疗、能源和建材等技术领域得到广泛应用,可以提高器件性能。但是由于薄膜制备工艺和生产环境等因素的影响,成品薄膜存在厚度分布不均和表面粗糙度大等问题,导致其光学和物理性能无法达到设计要求,严重影响其性能和应用。因此,需要开发出精度高、体积小、稳定性好的测量系统以满足微米级工业薄膜的在线检测需求。当前的光学薄膜测厚方法无法同时兼顾高精度、轻小体积和合理的成本,而具有纳米级测量分辨率的商用薄膜测厚仪器价格昂贵、体积大,无法满足工业生产现场的在线测量需求。因此,提出了一种基于反射光谱原理的高精度工业薄膜厚度测量解决方案,研发了小型化、低成本的薄膜厚度测量系统,并提出了一种无需标定样品的高效稳定的膜厚计算算法。该系统可以实现微米级工业薄膜的厚度测量。高精度膜厚仪的原理白光干涉膜厚测量技术可以应用于光学涂层中的薄膜反射率测量。
用峰峰值法处理光谱数据时,被测光程差的分辨率取决于光谱仪或CCD的分辨率。我们只需要获取相邻的两个干涉峰值处的波长信息,即可确定光程差,不必关心此波长处的光强大小,从而降低了数据处理难度。此外,也可以利用多组相邻干涉光谱极值对应的波长分别求出光程差,然后再求平均值作为测量结果,以提高该方法的测量精度。但是,峰峰值法存在着一些缺点:当使用宽带光源时,不可避免地会有与光源同分布的背景光叠加在接收光谱中,从而引起峰值处波长的改变,从而引入测量误差。同时,当两干涉信号之间的光程差很小,导致其干涉光谱只有一个干涉峰时,此法便不再适用。
光谱拟合法易于应用于测量,但由于使用了迭代算法,因此其优缺点在很大程度上取决于所选择的算法。随着遗传算法、模拟退火算法等全局优化算法的引入,被用于测量薄膜参数。该方法需要一个较好的薄膜光学模型(包括色散系数、吸收系数、多层膜系统),但实际测试过程中薄膜的色散和吸收的公式通常不准确,特别是对于多层膜体系,建立光学模型非常困难,无法用公式准确地表示出来。因此,通常使用简化模型,全光谱拟合法在实际应用中不如极值法有效。此外,该方法的计算速度慢,不能满足快速计算的要求。白光干涉膜厚测量技术可以实现对薄膜的大范围测量和分析。
白光干涉的分析方法利用白光干涉感知空间位置的变化,从而得到被测物体的信息。它是在单色光相移干涉术的基础上发展而来的。单色光相移干涉术利用光路使参考光和被测表面的反射光发生干涉,再使用相移的方法调制相位,利用干涉场中光强的变化计算出其每个数据点的初始相位,但是这样得到的相位是位于(-π,+π]间,所以得到的是不连续的相位。因此,需要进行相位展开使其变为连续相位。再利用高度与相位的信息求出被测物体的表面形貌。单色光相移法具有测量速度快、测量分辨力高、对背景光强不敏感等优点。但是,由于单色光干涉无法确定干涉条纹的零级位置。因此,在相位解包裹中无法得到相位差的周期数,所以只能假定相位差不超过一个周期,相当于测试表面的相邻高度不能超过四分之一波长。这就限制了其测量的范围,使它只能测试连续结构或者光滑表面结构。操作需要一定的专业技能和经验,需要进行充分的培训和实践。微米级膜厚仪品牌企业
白光干涉膜厚测量技术可以实现对薄膜表面形貌的测量。国产膜厚仪生产商
根据以上分析,白光干涉时域解调方案的优点如下:①能够实现测量;②抗干扰能力强,系统的分辨率与光源输出功率的波动、光源波长的漂移以及外界环境对光纤的扰动等因素无关;③测量精度与零级干涉条纹的确定精度以及反射镜的精度有关;④结构简单,成本较低。但是,时域解调方法需要借助扫描部件移动干涉仪一端的反射镜来进行相位补偿,因此扫描装置的分辨率会影响系统的精度。采用这种解调方案的测量分辨率一般在几个微米,要达到亚微米的分辨率则主要受机械扫描部件的分辨率和稳定性所限制。文献[46]报道的位移扫描的分辨率可以达到0.54微米。然而,当所测光程差较小时,F-P腔前后表面干涉峰值相距很近,难以区分,此时时域解调方案的应用受到了限制。国产膜厚仪生产商
上一篇: 纳米级膜厚仪常见问题
下一篇: 品牌光谱共焦诚信企业推荐