膜厚仪厂商
可以使用光谱分析方法来确定靶丸折射率和厚度。极值法和包络法、全光谱拟合法是通过分析膜的反射或透射光谱曲线来计算膜厚度和折射率的方法。极值法测量膜厚度是根据薄膜反射或透射光谱曲线上的波峰的位置来计算的。对于弱色散介质,折射率为恒定值,通过极大值点的位置可求得膜的光学厚度,若已知膜折射率即可求解膜的厚度;对于强色散介质,首先利用极值点求出膜厚度的初始值,然后利用色散模型计算折射率与入射波长的对应关系,通过拟合得到色散模型的系数,即可解出任意入射波长下的折射率。常用的色散模型有cauchy模型、Selimeier模型、Lorenz模型等。白光干涉膜厚测量技术可以应用于光学涂层中的薄膜反射率测量。膜厚仪厂商
自1986年E.Wolf证明了相关诱导光谱的变化以来,人们开始在理论和实验上进行探讨和研究。结果表明,动态的光谱位移可以产生新的滤波器,可应用于光学信号处理和加密领域。本文提出的基于白光干涉光谱单峰值波长移动的解调方案,可应用于当两光程差非常小导致干涉光谱只有一个干涉峰的信号解调,实现纳米薄膜厚度测量。在频域干涉中,当干涉光程差超过光源相干长度时,仍然可以观察到干涉条纹。这种现象是因为白光光源的光谱可以看成是许多单色光的叠加,每一列单色光的相干长度都是无限的。当使用光谱仪接收干涉光谱时,由于光谱仪光栅的分光作用,宽光谱的白光变成了窄带光谱,导致相干长度发生变化。高精度膜厚仪的原理白光干涉膜厚测量技术可以对不同材料的薄膜进行联合测量和分析。
由于不同性质和形态的薄膜对系统的测量量程和精度的需求不尽相同,因而多种测量方法各有优劣,难以一概而论。,按照薄膜厚度的增加,适用的测量方式分别为分光光度法、椭圆偏振法、共聚焦法和干涉法。对于小于1μm的较薄薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较适合。而对于小于200nm的薄膜,由于透过率曲线缺少峰谷值,椭圆偏振法结果更加可靠。基于白光干涉原理的光学薄膜厚度测量方案目前主要集中于测量透明或者半透明薄膜,通过使用不同的解调技术处理白光干涉的图样,得到待测薄膜厚度。本章在详细研究白光干涉测量技术的常用解调方案、解调原理及其局限性的基础上,分析得到了常用的基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,我们提出了基于干涉光谱单峰值波长移动的白光干涉测量解调技术。
在激光惯性约束聚变(ICF)物理实验中,靶丸壳层折射率、厚度以及其分布参数是非常关键的参数。因此,实现对靶丸壳层折射率、厚度及其分布的精密测量对精密ICF物理实验研究非常重要。由于靶丸尺寸微小、结构特殊、测量精度要求高,因此如何实现对靶丸壳层折射率及其厚度分布的精密测量是靶参数测量技术研究中的重要内容。本文针对这一需求,开展了基于白光干涉技术的靶丸壳层折射率及厚度分布测量技术研究。精确测量靶丸壳层折射率、厚度及其分布是激光惯性约束聚变中至关重要的,对于ICF物理实验的研究至关重要。由于靶丸特殊的结构和微小的尺寸,以及测量的高精度要求,如何实现靶丸壳层折射率及其厚度分布的精密测量是靶参数测量技术研究中的重要目标。本文就此需求开展了基于白光干涉技术的靶丸壳层折射率及厚度分布测量技术的研究。增加光路长度可以提高仪器分辨率,但同时也会更容易受到振动等干扰,需要采取降噪措施。
与激光光源相比以白光的宽光谱光源由于具有短相干长度的特点使得两光束只有在光程差极小的情况下才能发生干涉因此不会产生干扰条纹。同时由于白光干涉产生的干涉条纹具有明显的零光程差位置避免了干涉级次不确定的问题。本文以白光干涉原理为理论基础对单层透明薄膜厚度测量尤其对厚度小于光源相干长度的薄膜厚度测量进行了研究。首先从白光干涉测量薄膜厚度的原理出发、分别详细阐述了白光干涉原理和薄膜测厚原理。接着在金相显微镜的基础上构建了垂直型白光扫描系统作为实验中测试薄膜厚度的仪器并利用白光干涉原理对的位移量进行了标定。白光干涉膜厚测量技术可以通过对干涉图像的分析实现对不同材料的薄膜的测量和分析。薄膜干涉膜厚仪标价
操作需要一定的专业技能和经验,需要进行充分的培训和实践。膜厚仪厂商
白光干涉在零光程差处,出现零级干涉条纹,随着光程差的增加,光源谱宽范围内的每条谱线各自形成的干涉条纹之间互有偏移,叠加的整体效果使条纹对比度下降。测量精度高,可以实现测量,采用白光干涉原理的测量系统的抗干扰能力强,动态范围大,具有快速检测和结构紧凑等优点。普通的激光干涉与白光干涉之间虽然有差别,但也有许多相似之处。可以说,白光干涉实际上就是将白光看作一系列理想的单色光在时域上的相干叠加,在频域上观察到的就是不同波长对应的干涉光强变化曲线。膜厚仪厂商
上一篇: 激光测距传感器 位移传感器
下一篇: 高频位移传感器信赖推荐