国内膜厚仪量大从优
基于白光干涉光谱单峰值波长移动的锗膜厚度测量方案研究:在对比研究目前常用的白光干涉测量方案的基础上,我们发现当两干涉光束的光程差非常小导致其干涉光谱只有一个干涉峰时,常用的基于两相邻干涉峰间距的解调方案不再适用。为此,我们提出了适用于极小光程差并基于干涉光谱单峰值波长移动的测量方案。干涉光谱的峰值波长会随着光程差的增大出现周期性的红移和蓝移,当光程差在较小范围内变化时,峰值波长的移动与光程差成正比。根据这一原理,搭建了光纤白光干涉温度传感系统对这一测量解调方案进行验证,得到了光纤端面半导体锗薄膜的厚度。实验结果显示锗膜的厚度为,与台阶仪测量结果存在,这是因为薄膜表面本身并不光滑,台阶仪的测量结果只能作为参考值。锗膜厚度测量误差主要来自光源的波长漂移和温度控制误差。该仪器的使用需要一定的专业技能和经验,操作前需要进行充分的培训和实践。国内膜厚仪量大从优
对同一靶丸的相同位置进行白光垂直扫描干涉实验,如图4-3所示。通过控制光学轮廓仪的运动机构带动干涉物镜在垂直方向上移动,测量光线穿过靶丸后反射到参考镜与到达基底后直接反射回参考镜的光线之间的光程差。显然,越偏离靶丸中心的光线测得的有效壁厚越大,其光程差也越大,但这并不表示靶丸壳层的厚度。只有当垂直穿过靶丸中心的光线测得的光程差才对应于靶丸的上、下壳层的厚度。因此,在进行白光垂直扫描干涉实验时,需要选择穿过靶丸中心的光线位置进行测量,这样才能准确地测量靶丸壳层的厚度。此外,通过控制干涉物镜在垂直方向上移动,可以测量出不同位置的厚度值,从而得到靶丸壳层厚度的空间分布情况。苏州膜厚仪技术操作之前需要专业技能和经验的培训和实践。
根据以上分析,白光干涉时域解调方案的优点如下:①能够实现测量;②抗干扰能力强,系统的分辨率与光源输出功率的波动、光源波长的漂移以及外界环境对光纤的扰动等因素无关;③测量精度与零级干涉条纹的确定精度以及反射镜的精度有关;④结构简单,成本较低。但是,时域解调方法需要借助扫描部件移动干涉仪一端的反射镜来进行相位补偿,因此扫描装置的分辨率会影响系统的精度。采用这种解调方案的测量分辨率一般在几个微米,要达到亚微米的分辨率则主要受机械扫描部件的分辨率和稳定性所限制。文献[46]报道的位移扫描的分辨率可以达到0.54微米。然而,当所测光程差较小时,F-P腔前后表面干涉峰值相距很近,难以区分,此时时域解调方案的应用受到了限制。
白光干涉测量技术,也称为光学低相干干涉测量技术,使用的是低相干的宽谱光源,如超辐射发光二极管、发光二极管等。与所有光学干涉原理一样,白光干涉也是通过观察干涉图案变化来分析干涉光程差变化,并通过各种解调方案实现对待测物理量的测量。采用宽谱光源的优点是,由于白光光源的相干长度很小(一般为几微米到几十微米之间),所有波长的零级干涉条纹重合于主极大值,即中心条纹,与零光程差的位置对应。因此,中心零级干涉条纹的存在为测量提供了一个可靠的位置参考,只需一个干涉仪即可进行待测物理量的测量,克服了传统干涉仪不能进行测量的缺点。同时,相对于其他测量技术,白光干涉测量方法还具有环境不敏感、抗干扰能力强、动态范围大、结构简单和成本低廉等优点。经过几十年的研究与发展,白光干涉技术在膜厚、压力、温度、应变、位移等领域已得到广泛应用。Michelson干涉仪的光路长度决定了仪器的精度。
由于不同性质和形态的薄膜对系统的测量量程和精度的需求不尽相同,因而多种测量方法各有优缺,难以一概而论。按照薄膜厚度的增加,适用的测量方式分别为椭圆偏振法、分光光度法、共聚焦法和干涉法。对于小于1μm的较薄薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较适合。而对于小于200nm的薄膜,由于透过率曲线缺少峰谷值,椭圆偏振法结果更加可靠。基于白光干涉原理的光学薄膜厚度测量方案目前主要集中于测量透明或者半透明薄膜,通过使用不同的解调技术处理白光干涉的图样,得到待测薄膜厚度。本章在详细研究白光干涉测量技术的常用解调方案、解调原理及其局限性的基础上,分析得到了常用的基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,我们提出了基于干涉光谱单峰值波长移动的白光干涉测量解调技术。随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提升和扩展。防水膜厚仪供应
可配合不同的软件进行数据处理和分析,如建立数据库、统计数据等。国内膜厚仪量大从优
干涉测量法是基于光的干涉原理实现对薄膜厚度测量的光学方法,是一种高精度的测量技术。采用光学干涉原理的测量系统一般具有结构简单,成本低廉,稳定性好,抗干扰能力强,使用范围广等优点。对于大多数的干涉测量任务,都是通过薄膜表面和基底表面之间产生的干涉条纹的形状和分布规律,来研究干涉装置中待测物理量引入的光程差或者是位相差的变化,从而达到测量目的。光学干涉测量方法的测量精度可达到甚至优于纳米量级,而利用外差干涉进行测量,其精度甚至可以达到10-3nm量级。根据所使用光源的不同,干涉测量方法又可以分为激光干涉测量和白光干涉测量两大类。激光干涉测量的分辨率更高,但是不能实现对静态信号的测量,只能测量输出信号的变化量或者是连续信号的变化,即只能实现相对测量。而白光干涉是通过对干涉信号中心条纹的有效识别来实现对物理量的测量,是一种测量方式,在薄膜厚度的测量中得到了广泛的应用。国内膜厚仪量大从优
上一篇: 国产膜厚仪生产商
下一篇: 线阵光谱共焦传感器品牌