原装膜厚仪技术指导

时间:2024年04月28日 来源:

由于不同性质和形态的薄膜对系统的测量量程和精度的需求不尽相同,因而多种测量方法各有优缺,难以一概而论。将上述各测量特点总结如表1-1所示,按照薄膜厚度的增加,适用的测量方式分别为椭圆偏振法、分光光度法、共聚焦法和干涉法。对于小于1μm的较薄薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较适合。而对于小于200 nm的薄膜,由于透过率曲线缺少峰谷值,椭圆偏振法结果更加可靠。基于白光干涉原理的光学薄膜厚度测量方案目前主要集中于测量透明或者半透明薄膜,通过使用不同的解调技术处理白光干涉的图样,得到待测薄膜厚度。本章在详细研究白光干涉测量技术的常用解调方案、解调原理及其局限性的基础上,分析得到了常用的基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,我们提出了基于干涉光谱单峰值波长移动的白光干涉测量解调技术。该仪器的工作原理是通过测量反射光的干涉来计算膜层厚度,基于反射率和相位差。原装膜厚仪技术指导

原装膜厚仪技术指导,膜厚仪

晶圆对于半导体器件至关重要,膜厚是影响晶圆物理性质的重要参数之一。通常对膜厚的测量有椭圆偏振法、探针法、光学法等,椭偏法设备昂贵,探针法又会损伤晶圆表面。利用光学原理进行精密测试,一直是计量和测试技术领域中的主要方法之一,在光学测量领域,基于干涉原理的测量系统已成为物理量检测中十分精确的系统之一。光的干涉计量与测试本质是以光波的波长作为单位来进行计量的,现代的干涉测试与计量技术已能达到一个波长的几百分之一的测量精度,干涉测量的更大特点是它具有更高的灵敏度(或分辨率)和精度,。而且绝大部分干涉测试都是非接触的,不会对被测件带来表面损伤和附加误差;测量对象较广,并不局限于金属或非金属;可以检测多参数,如:长度、宽度、直径、表面粗糙度、面积、角度等。原装膜厚仪技术指导高精度的白光干涉膜厚仪通常采用Michelson干涉仪的结构。

原装膜厚仪技术指导,膜厚仪

针对微米级工业薄膜厚度测量 ,研究了基于宽光谱干涉的反射式法测量方法。根据薄膜干涉及光谱共聚焦原理 ,综合考虑成本、稳定性、体积等因素要求,研制了满足工业应用的小型薄膜厚度测量系统。根据波长分辨下的薄膜反射干涉光谱模型,结合经典模态分解和非均匀傅里叶变换思想,提出了一种基于相位功率谱分析的膜厚解算算法,能有效利用全光谱数据准确提取相位变化,对由环境噪声带来的假频干扰,具有很好的抗干扰性。通过对PVC标准厚度片,PCB板芯片膜层及锗基SiO2膜层的测量实验对系统性能进行了验证,结果表明测厚系统具有1~75μm厚度的测量量程,μm.的测量不确定度。由于无需对焦,可在10ms内完成单次测量,满足工业级测量高效便捷的应用要求。

对同一靶丸相同位置进行白光垂直扫描干涉 ,图4-3是靶丸的垂直扫描干涉示意图,通过控制光学轮廓仪的运动机构带动干涉物镜在垂直方向上的移动,从而测量到光线穿过靶丸后反射到参考镜与到达基底直接反射回参考镜的光线之间的光程差,显然,当一束平行光穿过靶丸后,偏离靶丸中心越远的光线,测量到的有效壁厚越大,其光程差也越大,但这并不表示靶丸壳层的厚度,当垂直穿过靶丸中心的光线测得的光程差才对应靶丸的上、下壳层的厚度。广泛应用于电子、半导体、光学、化学等领域,为研究和开发提供了有力的手段。

原装膜厚仪技术指导,膜厚仪

常用白光垂直扫描干涉系统的原理:入射的白光光束通过半反半透镜进入到显微干涉物镜后,被分光镜分成两部分,一个部分入射到固定的参考镜,一部分入射到样品表面,当参考镜表面和样品表面的反射光通过分光镜后,再次汇聚产生干涉条纹,干涉光通过透镜后,利用电荷耦合器(CCD)可探测整个视场内双白光光束的干涉图像。利用Z向精密位移台带动干涉镜头或样品台Z向扫描,可获得一系列的干涉图像。根据干涉图像序列中对应点的光强随光程差变化曲线,可得该点的Z向相对位移;然后,由CCD图像中每个像素点光强最大值对应的Z向位置获得被测样品表面的三维形貌。总结,白光干涉膜厚仪是一种应用广、具有高精度和可靠性的薄膜厚度测量仪器。防水膜厚仪厂家

白光干涉膜厚测量技术可以在不同环境下进行测量;原装膜厚仪技术指导

在初始相位为零的情况下,当被测光与参考光之间的光程差为零时,光强度将达到最大值。为探测两个光束之间的零光程差位置,需要精密Z轴向运动台带动干涉镜头作垂直扫描运动或移动载物台,垂直扫描过程中,用探测器记录下干涉光强,可得白光干涉信号强度与Z向扫描位置(两光束光程差)之间的变化曲线。干涉图像序列中某波长处的白光信号强度随光程差变化示意图,曲线中光强极大值位置即为零光程差位置,通过零过程差位置的精密定位,即可实现样品表面相对位移的精密测量;通过确定最大值对应的Z向位置可获得被测样品表面的三维高度。原装膜厚仪技术指导

信息来源于互联网 本站不为信息真实性负责