静安区激光位移传感器货真价实

时间:2024年07月12日 来源:

为克服由于前述各种因素导致激光位移传感器像面上的像点光斑不对称现象对位移检测产生的影响,目前本技术领域采用的做法大致有以下几种情况:采用抗饱和芯片,用以消除芯片饱和产生的拖尾现象,但该方法还无法减小被测物体表面因反射不均匀或因粗糙度不均匀而引起的检测误差;在工业检测中根据不同的被测物体表面反射情况,按照其产生的有规律的不同形状的光斑,采用不同的数据处理方法提高检测精度,这对工作场合稳定、被测物体表面有规律的情况是完全可以的,但对被测表面反射情况事先无法知道的道路检测方面,同样还存在由于光斑不对称产生的测量误差;采用激光束对目标物体进行扫描和测量,因此可以实现非接触式的位移测量。静安区激光位移传感器货真价实

根据物体表面的散射特性,可确定入射光与成像透镜光轴的夹角。激光入射到被测物体表面,散射光强度成椭球型分布[6]。当入射光垂直入射时,α值越小,成像透镜接收到的散射光强度越大,但角度过小对探测器分辨率要求及制作工艺上都有较高难度,综合考虑取α值为21.8°,由仪器的测量范围±10mm可得到物距为53.85mm。通常情况下,库克三元组有很好的成像效果[7],因此选择库克三元组作为成像透镜的初始结构进行优化。优化过程中以各个镜片表面的半径为变量,控制厚度在适当范围,同时将像面与光轴的夹角β设为可变,采用CODEV的横向像差与波像差相结合的方式进行优化,得到下面的结果。图3为优化后的成像光学系统高精度激光位移传感器产品使用误区激光位移传感器是利用激光技术进行测量的传感器。

从图2的镜头图可以看出,第二块透镜的半径很小,主要是为了保证系统在整个工作范围内得到相对均匀的光斑。表1给出了在工作范围内光斑的直径大小,maximum为0.4mm,在靠近透镜的一边,minimun为0.08mm,在55mm处。由于成像系统的入射光是整形部分光经过物体散射回去的,因此整形系统得到的光斑不能太小;同时为了保证精度要求,光斑也不能太大,上面的结果能够满足需求。得到好的出射光斑以后,如何接收物体表面的散射光并使其精确成像,是确保激光位移传感器精度的关键问题。在直入射式三角法测量中,物体沿激光入射方向移动,物面并不垂直于成像光轴。那么在透镜成像过程中(如图1),由几何成像公式可证明: tanα/tanβ=d1/d',即为理想成像的Scheimpflug条件[5]。要想达到理想的成像效果,光电探测器需依此条件放置。

从图3所示的成像光学系统结构图可看出,在整个物面并不垂直于光轴时,经过系统成像以后得到的像面也不垂直于光轴,与光轴存在一定的夹角β,设计lastβ优化值取为60.4628°,此时像面上可得到比较理想的光斑分布。在工作范围内不同视场的散射光均能很好地成像于探测器。在图4中可看到不同视场的成像光斑形状,此点列图表明成像光斑分布均匀,但还存在一定的剩余像差,主要为球差,光斑大小可见表2,光斑直径在20μm左右。同时根据设计结果可得像距为33.092mm,经计算tanα/tanβ=0.6137,di/do=0.6145,此物镜设计基本满足于Scheimpflug理想成像条件。高精度激光位移传感器的响应速度非常快,能够实时监测目标物体的位移变化。

本实用新型提供了一种激光位移传感器检验校准装置,包括一可伸缩导轨、一微调装置、一传感器夹持装置、一激光位移传感器以及一激光红外线接收挡板;所述微调装置和传感器夹持装置设于所述可伸缩导轨的上端;所述激光位移传感器夹持在所述传感器夹持装置上,且使所述激光位移传感器的激光发射端朝向所述微调装置;所述激光红外线接收挡板与所述微调装置固接,且使所述激光红外线接收挡板的接收面朝向所述传感器夹持装置。本实用新型的优点在于:简化检验流程、检验精度高、设备结构简单、当设备闲置时收缩导轨可节约占地面积。激光三角反射式测量原理基于简单的几何关系。直销激光位移传感器市场价格

它可以用于测量液压系统的位移,以提高系统的控制精度。静安区激光位移传感器货真价实

在感光元件的多个感光单元的主要排列方向为子弧矢向的情况下,成像物镜本身的MTFS>MTFT、或者在感光元件的多个感光单元的主要排列方向为子午方向的情况下,成像物镜本身的MTFT>MTFS,使得解析结果满足条件;和/或在成像物镜前和/或在成像物镜后加入能够引入像散的光学元器件,并且配合微调所述成像物镜与所述感光元件之间的相对距离使得解析结果满足条件。反光元件,反光元件设置在成像物镜的出射光路上,成像物镜的出射光经反光元件反射后,入射到感光元件。静安区激光位移传感器货真价实

信息来源于互联网 本站不为信息真实性负责