高精度膜厚仪使用误区

时间:2024年08月11日 来源:

光纤白光干涉测量使用的是宽谱光源 。光源的输出光功率和中心波长的稳定性是光源选取时需要重点考虑的参数。论文所设计的解调系统是通过检测干涉峰值的中心波长的移动实现的,所以光源中心波长的稳定性将对实验结果产生很大的影响。实验中我们所选用的光源是由INPHENIX公司生产的SLED光源,相对于一般的宽带光源具有输出功率高、覆盖光谱范围宽等特点。该光源采用+5V的直流供电,标定中心波长为1550nm,且其输出功率在一定范围内是可调的,驱动电流可以达到600mA。精度高的白光干涉膜厚仪通常采用Michelson干涉仪的结构。高精度膜厚仪使用误区

高精度膜厚仪使用误区,膜厚仪

微纳制造技术的发展推动着检测技术向微纳领域进军 ,微结构和薄膜结构作为微纳器件中的重要组成部分,在半导体、航天航空、医学、现代制造等领域得到了广泛的应用,由于其微小和精细的特征,传统检测方法不能满足要求。白光干涉法具有非接触、无损伤、高精度等特点,被广泛应用在微纳检测领域,另外光谱测量具有高效率、测量速度快的优点。因此,本文提出了白光干涉光谱测量方法并搭建了测量系统。和传统白光扫描干涉方法相比,其特点是具有较强的环境噪声抵御能力,并且测量速度较快。国产膜厚仪安装操作注意事项膜厚仪依赖于膜层和底部材料的反射率和相位差来实现这一目的。

高精度膜厚仪使用误区,膜厚仪

开展白光干涉理论分析 ,在此基础详细介绍了白光垂直扫描干涉技术和白光反射光谱技术的基本原理,完成了应用于靶丸壳层折射率和厚度分布测量实验装置的设计及搭建。该实验装置主要由白光反射光谱探测模块、靶丸吸附转位模块、三维运动模块、气浮隔震平台等几部分组成,可实现靶丸的负压吸附、靶丸位置的精密调整以及靶丸360°范围的旋转及特定角度下靶丸壳层白光反射光谱的测量。基于白光垂直扫描干涉和白光反射光谱的基本原理,建立了二者联用的靶丸壳层折射率测量方法,该方法利用白光反射光谱测量靶丸壳层光学厚度,利用白光垂直扫描干涉技术测量光线通过靶丸壳层后的光程增量,二者联立即可求得靶丸折射率和厚度数据。

白光干涉频域解调顾名思义是在频域分析解调信号 ,测量装置与时域解调装置几乎相同,只需把光强测量装置换为光谱仪或者是CCD ,接收到的信号是光强随着光波长的分布。由于时域解调中接收到的信号是一定范围内所有波长的光强叠加,因此将频谱信号中各个波长的光强叠加,即可得到与它对应的时域接收信号。由此可见,频域的白光干涉条纹不仅包含了时域白光干涉条纹的所有信息,还包含了时域干涉条纹中没有的波长信息。在频域干涉中,当两束相干光的光程差远大于光源的相干长度时,仍可以在光谱仪上观察到频域干涉条纹。这是由于光谱仪内部的光栅具有分光作用,能够将宽谱光变成窄带光谱,从而增加了光谱的相干长度。这一解调技术的优点就是在整个测量系统中没有使用机械扫描部件,从而在测量的稳定性和可靠性上得到很大的提高。常见的频域解调方法有峰峰值检测法、傅里叶解调法以及傅里叶变换白光干涉解调法等。白光干涉膜厚测量技术的优化需要对实验方法和算法进行改进;

高精度膜厚仪使用误区,膜厚仪

论文所研究的锗膜厚度约300nm ,导致其白光干涉输出光谱只有一个干涉峰,此时常规基于相邻干涉峰间距解调的方案(如峰峰值法等)将不再适用。为此,我们提出了一种基于单峰值波长移动的白光干涉测量方案,并设计搭建了膜厚测量系统。温度测量实验结果表明,峰值波长与温度变化之间具有良好的线性关系。利用该测量方案,我们测得实验用锗膜的厚度为338.8nm,实验误差主要来自于温度控制误差和光源波长漂移。论文通过对纳米级薄膜厚度的测量方案研究,实现了对锗膜和金膜的厚度测量。论文主要的创新点是提出了白光干涉单峰值波长移动的解调方案,并将其应用于极短光程差的测量。白光干涉膜厚测量技术可以对薄膜的厚度、反射率、折射率等光学参数进行测量。品牌膜厚仪制造厂家

膜厚仪的干涉测量能力较高,可以提供精确和可信的膜层厚度测量结果。高精度膜厚仪使用误区

目前 ,应用的显微干涉方式主要有Mirau显微干涉和Michelson显微干涉两张方式。在Mirau型显微干涉结构,在该结构中物镜和被测样品之间有两块平板,一个是涂覆有高反射膜的平板作为参考镜,另一块涂覆半透半反射膜的平板作为分光棱镜,由于参考镜位于物镜和被测样品之间,从而使物镜外壳更加紧凑,工作距离相对而言短一些,其倍率一般为10-50倍,Mirau显微干涉物镜参考端使用与测量端相同显微物镜,因此没有额外的光程差。是常用的方法之一。高精度膜厚仪使用误区

信息来源于互联网 本站不为信息真实性负责