广东知识库系统大模型如何落地
知识库的发展经历了四个阶段,知识库1.0阶段,该阶段是知识的保存和简单搜索;知识库2.0阶段,该阶段开始注重知识的分类整理;知识库3.0阶段,该阶段已经形成了完善的知识存储、搜索、分享、权限控制等功能。现在是知识库4.0阶段,即大模型跟知识库结合的阶段。
目前大模型知识库系统已经实现了两大突破。是企业本地知识库与大模型API结合,实现大模型对私域知识库的再利用,比如基于企业知识库的自然语言、基于企业资料的方案生成等;第二是基于可商用开源大模型进行本地化部署及微调,使其完成成为企业私有化的本地大模型,可对企业各业务实现助力。 在全球范围内,已有多个平台接入ChatGPT服务,客户服务的边界被不断拓宽拓深,智能化程度进一步提高。广东知识库系统大模型如何落地
AI大模型赋能智能服务场景主要有以下几种:
1、智能热线。可根据与居民/企业的交流内容,快速判定并精细适配政策。根据**的不同需求,通过智能化解决方案,提供全天候的智能服务。
2、数字员工。将数字人对话场景无缝嵌入到服务业务流程中,为**提供“边聊边办”的数字化服务。办事**与数字人对话时,数字人可提供智能推送服务入口,完成业务咨询、资讯推送、服务引导、事项办理等服务。
3、智能营商环境分析。利用多模态大模技术,为用户提供精细的全生命周期办事推荐、数据分析、信息展示等服务,将“被动服务”模式转变为“主动服务”模式。
4、智能审批。大模型+RPA的办公助手,与审批系统集成,自动处理一些标准化审批请求,审批进程提醒,并自动提取审批过程中的关键指标和统计数据,生成报告和可视化图表,提高审批效率和质量。 山东垂直大模型推荐GPT大模型利用预先训练的知识和强大的生成能力,可以很好地完成具体任务,成为得力的办公助手。
大模型和小模型对比小模型的优势表现在以下几点首先,由于小模型的参数量较少,因此训练和推理速度更快。
例如,在自然语言处理任务中,大模型可能需要数小时甚至数天来进行训练,而小模型则能够在较短时间内完成训练。
其次,是占用资源较少,小模型在移动设备、嵌入式系统或低功耗环境中更易于部署和集成,占用资源少,能够在资源受限的设备上运行。
第三,当面对少量标注数据时,大模型可能会因为过拟合而出现性能下降的情况,而小模型通常能够更好地泛化,提供更准确的结果。
第四,小模型在原型开发阶段非常有用,因为它们可以更快地迭代和尝试不同的方法,通过使用小模型进行迅速验证,可以更清楚地了解问题和解决方案的可行性。
GPT大模型是一种基于互联网,可用数据进行训练,实现文本生成的深度学习模型,兼具“大规模”和“预训练”两种属性,能充分理解人类语言,在内容生成方面表现出众,可以大幅提升AI的泛化性、通用性与实用性。
基于自身的能力优势,GPT大模型的应用十分广阔,如文本生成、在线翻译、智能对话、数据分析、个性化推荐等等,利用预先训练的知识和强大的生成能力,可以很好地完成具体任务,满足具体需求。在企业日常办公的应用场景中,GPT大模型可以大力提升办公效率,成为一个得力的办公助手。 大模型在自然语言处理、计算机视觉、生成模型、语音识别和对话系统等领域取得了明显的发展。
大模型在金融行业投资决策和风险管理方面的具体应用有:
1、投资决策金融市场变化多端,投资者需要根据市场动态来做出决策,而大模型应用可以对市场数据进行分析和预测,帮助投资者准确判断市场趋势和走向,为投资者提供更加科学、准确的投资策略建议,提高决策的科学性,实现资产的优化配置。
2、风险管理大模型应用通过分析大量的历史数据,可以预测未来的市场波动和风险事件,帮助金融机构对风险进行评估和管理,及时采取措施,降低风险。同时还可以对借款人员的信用历史,资产负债,经营状况做多维度分析,降低坏账风险。 大模型智能客服赋能传统热线电话与人工客服,让技术与服务深度耦合,解决了**接待难、办事难等症结问题。广东知识库系统大模型如何落地
大模型的发展面临一些挑战,如训练成本高、推理效率低、计算资源需求等。研究人员正在努力解决这些问题。广东知识库系统大模型如何落地
大模型在金融行业客户服务方面也有非常不错的表现。
首先,大模型知识库与应答系统囊括金融行业产品、服务、政策、办事流程及一般话术,AI机器人通过理解客户问题,生成符合业务场景的回答,满足客户需求,提高客服工作成效。
其次,在个人服务领域,大模型可以根据银行流水收支变化为客户提供还款建议、理财指导等方案,还能帮助推荐适合的金融产品和服务,是很好的理财顾问。
第三,大模型通过对客户标签和交易属性等多类数据的分析,可以对目标客户群开展不同层次,不同方式的服务触达,提供”千人千面“的特色服务,是极具效率的金融营销和办公助手。 广东知识库系统大模型如何落地
上一篇: 上海客户智能回访问卷
下一篇: 深圳电信智能客服