Spectra-CT 色温可调Helios标准光源高光谱成像

时间:2024年10月27日 来源:

​激光功率测量,积分球很容易捕获或者集成近准直光源例如激光光束或者高度分散的光源(例如激光二极管或VCSEL)。由于积分球独特几何结构,激光束功率测量不受激光束偏振及校准的影响。在不影响探测器信号的情况下,该系统可使用开放端口,或可安装激光二极管模块或缩孔器的光纤适配器。 (图5)。可以添加额外的端口来执行并行光谱表征,使其成为可靠的激光二极管寿命测试的理想设备。总之,积分球的典型应用涵盖了光度测量、颜色测量、环境光学测量、光学材料测试、医学光学测试等领域,为科学研究、工业生产和医学诊断提供了有力的支持。积分球内的光源经过处理,可以模拟不同的光照条件。Spectra-CT 色温可调Helios标准光源高光谱成像

Spectra-CT 色温可调Helios标准光源高光谱成像,积分球

在光学领域,积分球堪称神奇的存在。看似普通的球体,却隐藏着无穷的奥秘。它的名字就预示着它的神奇功能——将光线“积分”起来。那么,这个神奇的积分球究竟是如何做到的呢?想象一下光线进入积分球后的情景,就像进入了一个迷宫。光线在积分球内壁不断反射,经过精密的设计和计算,确保光线在多次反射后均匀地散布在球体内。无论从哪个角度观察,都能得到一致的光强分布。这就像小时候玩的弹珠游戏,弹珠在平滑的球体内滚动,不断反射,较终分散到各个角落。光线在积分球内的行为与之类似,经过不断的反射和折射,达到均匀分布的效果。光谱辐照度辐射定标批发积分球不仅提高了光源的均匀性,也降低了光源对实验结果的干扰。

Spectra-CT 色温可调Helios标准光源高光谱成像,积分球

积分球看起来很简单,该光学设备包括一个中空的球形腔体,内部涂有特殊的高反射朗伯涂层,用于均匀散射和漫射入射光。积分球设有入口和出口。通过变换积分球的配置,如光源、配件、开口等可实现不同的应用。积分球工作原理:积分球类似于扩散器,保留更多的光线信息,包括光的颜色、强度等,忽略了空间信息(无法告诉我们在球体表面的不同位置上光的强度是如何分布的)。积分球的内表面是高朗伯特性漫反射材料,这种材料能够将入射的光线以相同的强度反射到各个方向,从而使得光线在球内经过多次反射和散射后,能够均匀地分布,减少光线原始方向的影响。

沿球体的直径,对开两个圆口,一个为入光口、一个为反光口。入光口处可以放置液体或固体样品,以做透过率测试之用;这时、反光口处则要放置由氧化铝(AI203)制成的副白板作为扩射元件,如图-6 所示;如果需要测试固体样品的反射率,则要将样品放置在副白板处,而副白板是否仍然需要继续使用,这就要视样品的性质而定了。如果样品完全不透明,则无需使用副白板;如果样品透明或半透明状,则一般仍需使用副白板,只是该白板要放置在样品的后面做衬底之用。积分球的内壁应是良好的球面,通常要求它相对于理想球面的偏差应不大于内径的0.2%。

Spectra-CT 色温可调Helios标准光源高光谱成像,积分球

空间集成,对实际积分球内部辐射度分布的精确分析取决于入射光通量的分布、实际积分球设计的几何细节和积分球涂层的反射率分布函数,以及安装在开口端口或积分球内部的每个设备的表面。较佳空间性能的设计准则是基于较大限度地提高涂层反射率和相对于所需的开口端口和系统设备的积分球直径。反射率和开口端口比例对空间积分的影响可以通过考虑达到入射到积分球表面的总通量所需的反射次数来说明。经过n次反射后产生的辐射度可以与稳态条件下相比较。积分球内的光源经过多次反射,形成了均匀的光照环境。Spectra-CT 色温可调Helios标准光源高光谱成像

积分球还可以用于光学实验中的光传输研究,通过观察球内的光分布,可以研究光的传播规律。Spectra-CT 色温可调Helios标准光源高光谱成像

但要制作出这样的积分球并不容易。需要精确的几何设计和材料选择,以确保光线的完美散射。而且,积分球还需要经过一系列的测试和校准,才能确保其性能达到要求。那么,积分球在我们的生活中有哪些应用呢?它在照明领域的应用非常普遍。例如,测试灯具的光效和色温。在显示领域,积分球用于测量屏幕亮度和对比度。在科研领域,积分球更是不可或缺的工具,用于测量各种光学参数和性能指标。看到这里,你是否对积分球产生了浓厚的兴趣?下次当你看到一个看似普通的球体时,不妨想一想它背后可能隐藏的神奇原理。因为谁知道呢?它也许就是下一个改变世界的创新!如果你对光学积分球还有更多疑问或想了解更多应用案例,请在评论区留言告诉我!也别忘了分享给你的朋友们哦!Spectra-CT 色温可调Helios标准光源高光谱成像

信息来源于互联网 本站不为信息真实性负责