多功能铝碳化硅联系人
AlSiC的典型热膨胀系数为(6~9)X10-6/K,参考芯片的6X 10-6/K,如果再加上芯片下面焊接的陶瓷覆铜板,那么三倍的差异就从本质上消除了。同时AlSiC材质的热导率可高达(180~240)W/mK(25℃),比铝合金热导率还高50%。英飞凌试验证明,采用AlSiC材料制作的IGBT基板,经过上万次热循环,模块工作良好如初,焊层完好。
AlSiC材料很轻,只有铜材的1/3,和铝差不多,但抗弯强度(>300MPa)却和钢材一样好。这使其在抗震性能方面表现***,超过铜基板。因此,在高功率电子封装方面,AlSiC材料以其独特的高热导、低热膨胀系数和抗弯强度的结合优势成为不可替代的材质。 杭州陶飞仑公司铝碳化硅相关方产品主要应用于航空、航天、电子、电力等多个行业。多功能铝碳化硅联系人
***代以塑料、金属、陶瓷等为主的简单封装,主要的用途是将器件封装在一起,起到包封、支撑、固定、绝缘等作用,这代封装材料目前主要用于电子产品的封装。2第二代封装材料,以可伐(Kovar)合金、钨铜合金产品为**,其对于航天、航空、****及以便携、袖珍为主要趋势的当代封装业来讲,有先天的劣势。3第三代封装材料即是以铝碳化硅为**的产品。铝碳化硅(AlSiC)是将金属的高导热性与陶瓷的低热膨胀性相结合,能满足多功能特性及设计要求,具有高导热、低膨胀、高刚度、低密度、低成本等综合优异性能,是当今芯片封装的***型材料。目前已大量应用到航空航天、新能源汽车、电力火车,微电子封装等领域。多功能铝碳化硅联系人杭州陶飞仑新材料有限公司铝碳化硅产品覆盖轻质耐磨/高精密结构件、微波电子/光电/大功率 IGBT 模块封装等。
3)、增强体SiC在基体中均匀分布的问题:按结构设计需求,使增强材料SiC均匀地分布于基体中也是铝碳化硅材料制造中的关键技术之一。尤其是在低体份铝碳化硅搅拌法、真空压力浸渗法、粉末冶金法中,SiC颗粒的团聚,以及不同尺寸SiC颗粒均匀分布为一项难点。该问题主要解决方法:①、对增强体SiC进行适当的表面处理,使其浸渍基体速度加快;②、加入适当的合金元素改善基体的分散性;③、施加适当的压力,使其分散性增大;④、施加外场(磁场,超声场等)。
铝碳化硅材料成型制造技术的发展趋势:铝碳化硅的材料成型方法还在不断改进和发展,高效、低成本、批量生产的方法仍需研究开发,这将关系到铝碳化硅材料的广泛应用和发展。当前,现代制造技术的发展为铝碳化硅复合材料的制备从理论研究到具体应用提供了有力的保证。计算机技术、现代测试技术、新材料技术的完善,使复合材料的制备技术、工艺不断推出,这些工艺本身也有交叉并相互融合,铝碳化硅材料制备技术的发展趋势必将是多学科、多种技术相“复合”的综合过程。因铝碳化硅具有热导率高、热膨胀系数低(热膨胀系数同芯片材料相近),有效减少芯片和电路开裂的几率。
AlSiC封装材料产业化引起国内科研院所、大学等单位的***重视,积极着手研发其净成形工艺,部分单位研制成功样品,为AlSiC工业化生产积累经验, 离规模化生产尚有一定距离,存在成本高、SiC体积含量不高、低粘度、55% ~ 75%高体积分材料的制备与浆粒原位固化技术等问题。我们公司采用创新型制备工艺,可制备50%-75%体分的铝碳化硅产品,在碳化硅预制件制备过程中,区别于氧化烧结法,所制备的碳化硅预制件无二氧化硅,对复合材料的热导率无抑制作用,极大的提高了复合材料的热导率,且极大低降低了加工成本。高体分铝碳化硅用于光学遥感卫星光学反射镜中。多功能铝碳化硅联系人
高体分铝碳化硅广泛应用于微电子的散热基板中。多功能铝碳化硅联系人
铝碳化硅复合材料虽然有很多优点,但优点有时就是缺点,如铝碳化硅材料抗磨,可做赛车、飞机的刹车件,但会造成机加的成本非常高。那么,整体零件一次铸造成形,就成了铝碳化硅零件的生产特征之一。另外,因为铝碳化硅的铸造环境相当**(普通的铸造手段是无法把铝液铸造进陶瓷之中的),那么,通用的精密铸造模具材料都不可使用,如精密铸造**常见的陶瓷型壳,放到铝碳化硅的铸造环境下,铝液会铸造进型壳之中,无法打型出产品。但杭州陶飞仑新材料有限公司采用创新型工艺方法,可有效避免了此类问题的发生。多功能铝碳化硅联系人
杭州陶飞仑新材料有限公司致力于电子元器件,以科技创新实现***管理的追求。陶飞仑新材料拥有一支经验丰富、技术创新的专业研发团队,以高度的专注和执着为客户提供铝碳化硅,铝碳化硼,铜碳化硅,碳化硅陶瓷。陶飞仑新材料继续坚定不移地走高质量发展道路,既要实现基本面稳定增长,又要聚焦关键领域,实现转型再突破。陶飞仑新材料始终关注自身,在风云变化的时代,对自身的建设毫不懈怠,高度的专注与执着使陶飞仑新材料在行业的从容而自信。
上一篇: 安徽多功能铝碳化硅价格多少
下一篇: 浙江碳化硅预制件价格多少