插件自恢复保险丝原理

时间:2023年09月14日 来源:

当电流或环境温度再提高时,自恢复保险丝系列会达到较高的温度。若此时电流或环境温度继续再增加,产生的热量会大于散发出去的热量,使得自恢复保险丝系列元件温度骤增,在此阶段,很小的温度变化会造成阻值的大幅提高,这时自恢复保险丝系列元件处于高阻保护状态,阻抗的增加限制了电流,电流在很短时间内急剧下降,从而保护电路设备免受损坏,只要施加的电压所产生的热量足够自恢复保险丝系列元件散发出的热量,处于变化状态下自恢复保险丝系列元件便可以一直处于动作 状态(高阻)。当施加的电压消失时,自恢复保险丝系列便可以自动恢复了。当电路过载时,自恢复保险丝不会自行熔断,达到保持电路不被过载电流损坏的效果。插件自恢复保险丝原理

插件自恢复保险丝原理,自恢复保险丝

自恢复保险丝上会有多大电压降Vdop?不同电路有差别。一般来讲,如果知道电阻和平衡状态的电流,电压降便可以计算出来。对于自恢复保险丝的最大电压降采用阻值R1max进行计算;典型压降可以采用阻值Rmax或者在Rmax未提供的情况下采用Rmin与R1max的平均值。如果Ih为正常工作电流,R为自恢复保险丝的电阻(R1max、(Rmax或(Rmin+R1max)/2)),则电路中自恢复保险丝上的电压降为:Vdrop=IhxR。在最大电压与冲击电流下自恢复保险丝能动作多少次?每种自恢复保险丝都有一特定的工作电压、承受特定的冲击电流。安规规定自恢复保险丝丝必须在动作6000次后仍能表现出PTC效应。对应用于通讯设备上的自恢复保险丝规定了在最大电压下,少则十几次多达上百次动作后其各种性能参数仍在原有范围内。硬件设计师们应该认识到这一点:自恢复保险丝是用来进行保护的,而不是用在将其不停的动作动作视为正常工作状态的场合。 自恢复保险丝直销自恢复保险丝的外观小巧,易于安装,可适用于各种不同规格的电路。

插件自恢复保险丝原理,自恢复保险丝

我们常见的这种自恢复的保险丝,在一般情况下是分为两种的,比如说聚合物高分子PPTC。或者是陶瓷CPTC。他们不同的优点和缺点。先说聚合物高分子PPTC,在常温的工作环境中,当然了,要在常温零功率。电阻式做的很小,体积来说相对的较小,而陶瓷CPTC就是在制造上比较的容易,并且价格上也是相对来说比较的便宜,但是不足的就是电阻大。以上就是有关自恢复保险丝的作用的内容,希望能对大家有所帮助。看了上文的一些相关介绍后,希望能够帮助到你。 

对自修复保险丝的过流电源电路维护具体全过程,大家尚不明确,其优势还待进一步讨论。迄今为止,大伙儿觉得自修复保险丝是根据高聚物的自修复设备,能够限定电流量。自修复保险丝的效果机理是将具备潜在的影响的负载电流量局限在可靠区域内。实际来讲便是:根据设备的过大电流量会致使內部发热量提升(I2R),从而导致自修复保险丝的提温,造成其电阻器提升。在发生超温状况前,自修复保险丝电阻器一般只占电源电路总特性阻抗不大一部分。如下图所显示,聚合体自修复保险丝的阻值扩大具备离散系统特点,那样的相比比较大的阻值会将线路中的交流电减少或限定在可靠的范畴内。从低电阻器到高内阻的变化点称作“振荡点”。 自恢复功能可以有效地保护电路中的各个元件,延长电路的使用寿命。

插件自恢复保险丝原理,自恢复保险丝

贴片自恢复保险丝测试指南:测试流程如下:1、初始内阻Rimin测量:拆包装,拿出保险丝,测量保险丝的内阻。2、焊接:将保险丝通过回流焊焊接在PCB上,PCB上连接有引线,便于进行电性能测试。3、保持电流Ihold测试:选用直流恒压恒流源进行测试。将电压调节到规格书规定的电压Vmax,电流调节到规格书规定的保持电流Ihold,通电15分钟。4、动作电流Itrip测试:选用直流恒压 恒流源进行测试。将电压调节到规格书规定的电压Vmax,电流调节到规格书规定的保持电流Itrip,通电5分钟。5、R1max测试:将动作后的保险丝放置冷却1小时,测量保险丝的内阻。自恢复保险丝的可靠性较高,可长时间使用而不需要更换。浙江交流自恢复保险丝供应

自恢复保险丝,是一种过流电子保护元件。插件自恢复保险丝原理

为什么我们要在电路里使用自恢复保险丝?电路保护,在电力系统中,除了熔断器之外,断路器(基本上是可复位的精密熔断器)用于保护电路导体(用于设备)免于过热,通过操作(并因此打开电路)当电流流过断路器再次超过预定限制。通常,这比在电路导体中引起不可接受的过热的电流低。再次,保护电路导体主要是为了防止电路导体过热,以及这些导体着火可能造成的损坏。自恢复保险丝用于电路过载维护时,具有恢复功能。希望以上的一些相关介绍能够帮助到你。 插件自恢复保险丝原理

信息来源于互联网 本站不为信息真实性负责