因斯蔻浦(上海)生物科技有限公司
因斯蔻浦(上海)生物科技有限公司

因斯蔻浦(上海)生物科技有限公司

地址:上海市普陀区上海市奉贤区金碧路2012号

国内2PPLUS双光子显微镜成像原理是什么

时间:2024年10月23日 来源:因斯蔻浦(上海)生物科技有限公司

为了验证动物生物样品的时间分辨成像能力,本实验观察了活海拉细胞高尔基体中的青色荧光蛋白mTFP1,见图3(a),(c)-(i)。使用的物镜及尺寸与荧光颗粒成像一致,对比可见v2PE在空间分辨率、激发深度级图像对比度较常规宽场显微镜都有所提高。此外,v2PE可以同时激发多个波长的荧光蛋白,这种技术还可以应用于细胞内分子的三维动力学多色成像。在此基础上,实验对海拉细胞中的高尔基体(mTFP1)和纤颤蛋白(EGFP)进行了在体成像,见图3(j)-(n),青色为mTFP1,绿色为EGFP,实验中两种荧光蛋白同时成像,终采用光谱分离法将不同蛋白的荧光信号分离出来。双光子显微镜厂家就找滔博生物。国内2PPLUS双光子显微镜成像原理是什么

国内2PPLUS双光子显微镜成像原理是什么,双光子显微镜

双光子之源:飞秒激光双光子吸收理论早在1931年就由诺奖得主MariaGoeppertMayer提出,30年后因为有了激光才得到实验验证,但是到WinfriedDenk发明双光子显微镜又用了将近30年。要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100MHz)输出超短脉冲(100fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。国内双光子显微镜最大分辨率双光子显微镜在组织透明化成像中应用。

国内2PPLUS双光子显微镜成像原理是什么,双光子显微镜

从双光子的原理和特点我们就可以明显的得出双光子的优点:☆穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力,因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题;☆高分辨率:由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收局限于焦点处的体积约为波长3次方的范围内;☆漂白区域小:由于激发只存在于交点处,所以焦点以外的区域都不会发生光漂白现象;☆荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器(共焦),这样就提高了对荧光的收集率,而收集率的提高直接导致图像对比度的提高。

双光子显微镜为什么穿透能力强?生物组织在近红外波段存在两个窗口,第1个近红外窗口对应波长在700nm-900nm,第2个近红外窗口对应波长在1000nm-1400nm之间。举例说明就是单晶硅对于可见光几乎是不透明的,但是对于红外波段就像是“水晶”一样通透性很好了。原因有两点:1.生物组织对红外光的吸收弱,对可见光吸收强。类似的,平时用手电筒照射手指,会看到手通透红亮,也是由于生物组织对长波长的红光吸收少。2.生物组织对红外光的散射弱。因为瑞利散射的强度反比于波长λ的四次方。类似的,早晨的太阳非常红,也就是因为长波长的红光穿透力更强。这两点共同导致长波长的红外光比可见光对生物组织的穿透能力强。双光子显微镜能够在细胞甚至是亚细胞水平上对神经细胞的形态结构、离子浓度、细胞运动、进行直接成像监测。

国内2PPLUS双光子显微镜成像原理是什么,双光子显微镜

双光子显微镜的优势:在深度组织中以较长时间对活细胞成像,双光子显微镜是当前之选。双光子和共聚焦显微镜都是通过激光激发样品中的荧光标记,使用探测器测量被激发的荧光。但是,共聚焦一般使用单模光纤耦合激光器,通过单光子激发荧光,而双光子使用飞秒激光器,通过几乎同时吸收两个长波光子激发荧光。下面是两种技术的对比图。双光子激发荧光的主要优势:双光子比共聚焦使用的更长的波长,所以对组织的损伤更小且穿透更深。共聚焦的成像深度一般为100微米,双光子则能达到250到500微米,甚至超过1毫米。另外,同时吸收两个光子意味只有较强度聚焦点处能被激发,所以不会损伤焦平面之外的组织,并且生成更清晰的图像。双光子显微镜的应用中,该如何选择以及更好的使用PMT。ultima双光子显微镜授权公司

双光子显微镜还可以对一些具有双光子特性的染料细胞进行特定实验;国内2PPLUS双光子显微镜成像原理是什么

美国霍华德·休斯医学研究所在JaneliaFarmResearchCampus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士较近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,明显改进了成像质量,使得原来在鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µm)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,使得在小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果发表在较新一期的《NatureMethods》。国内2PPLUS双光子显微镜成像原理是什么

信息来源于互联网 本站不为信息真实性负责

欢迎!您可以随时使用
在线留言软件与我沟通

知道了

undefined
微信扫一扫
在线咨询