细胞钙离子钙成像inscopix
钙成像技术(calciumimaging)是指利用钙离子指示剂监测组织内钙离子浓度的方法。在神经系统研究方面,在在体(invivo)或者离体(invitro)实验中,钙成像技术被广泛应用于同时监测成百上千个神经元内钙离子的变化,从而检测神经元的活动情况)。有了钙成像技术,原本悄无声息的神经活动就变成了一幅斑斓闪烁的壮观影像,科学家终于可以亲眼看着神经信号在神经网络之中往来穿梭。因此,这种技术一出现,就受到了全世界神经科学家们的追捧,至今依然是人们观测神经活动直接的手段。钙离子在很多生理活动中都发挥着重要作用。细胞钙离子钙成像inscopix
传统的宽场荧光显微镜由于光散射的影响,只能够对大脑浅层的神经元或在离体组织上进行成像,共聚焦显微镜由于光损伤较大,一般也只用于离体钙成像。随着荧光显微镜技术的迅速发展,在体钙成像技术得到了蓬勃发展。双光子荧光显微镜能够在进行在体成像的时候实现高分辨率和高信噪比。例如,用双光子显微镜对海马树突棘的钙离子信号进行成像,研究神经元突触后长时程降低(Wangetal.,2000);观察在体小鼠运动皮层神经元在嗅觉选择任务中刺激相关电位(Komiyamaetal.,2010)等等。不过,这些实验还是需要对动物进行麻醉和固定,而神经科学领域很多研究更希望能够对自由活动的动物进行研究。近年来出现了通过植入性的microscope或microlens进行在体freelymoving动物钙成像的技术。使用一端带有GRINlens的光纤连接显微镜和动物大脑,从特定脑区发出的荧光信号被光纤收集,然后通过Inscopix显微镜成像。动物头部只需植入GRINlens,方便活动。荧光钙成像nVoke钙成像技术(calcium imaging)是指利用钙离子指示剂或指示监测组织内钙离子浓度的方法。
单光子显微技术是较成熟的荧光显微技术,但由于其使用的激发光波长较短,成像深度有限;能量较大,会造成对荧光物质的漂白,光毒性严重。激光共焦扫描显微镜由于共焦显微镜的孔径很小,实现样本三维成像要逐点扫描,成像速度慢,对样本损害大,很难用于长时间活细胞成像。而宽场显微镜能够很好地实现实时动态成像,光漂白小,因而较早应用于活细胞内的实时检测,但宽场显微镜由于离焦信号的干扰,难以实现多维成像。Derrick想重点介绍一下较为常用的观察设备——双光子荧光显微镜(Two-PhotonLaser-ScanningMicroscopy)。双光子显微成像技术是近些年发展起来的结合了共聚焦激光扫描显微镜和双光子激发技术的一种新型非线性光学成像方法,采用长波激发,能对组织进行深层次成像。常用的比较好激发波长大多位于800-900nm,而水、血液和固有组织发色团对这个波段的光吸收率低,此外散射的激发光子不能激发样品,因此背景第,光损伤小,适用于在体检测。双光子荧光成像技术能准确定位细胞内置入的微电极位置,从而观察胞体、树突甚至单个树突棘的活性。研究者可完整的观察神经组织的分辨荧光图像,甚至可以分辨神经细胞单个树突棘中的钙分布。
单光子显微技术是相对成熟的荧光显微技术,但由于单光子显微技术使用的激发光波长较短,成像深度比较有限;能量比较大,会造成对荧光物质的漂白,光毒性严重。激光共焦扫描显微镜由于共焦显微镜的孔径很小,实现样本三维成像要逐点扫描,成像速度慢,对样本损害大,很难用于长时间活细胞成像实验。而宽场显微镜能够很好地实现实时动态成像,光漂白小,因而较早应用于活细胞内的实时检测,但宽场显微镜由于离焦信号的干扰,难以实现多维成像。钙成像技术发现钙离子产生各种各样的胞内信号。
可见光激发Ca2+荧光探针:与紫外光激发探针相比,可见光激发Ca2+探针具有更强的染料吸收性能,对Ca2+变化水平检测敏感度也更高,能够降低对活细胞的光毒性和样品自发荧光以及光散射的干扰,且无光谱偏移。较常使用的可见光激发Ca2+荧光探针有Fluo-3,Fluo-4,Rhod-2等,同时他们也都是非比率型指示剂。Fluo-3是较常用的可见光激发Ca2+荧光指示剂之一,是典型的的单波长指示剂,比较大激发波长为506nm,比较大发射波长为526nm。它与Ca2+结合之前几乎无荧光,结合后荧光会增加60至100倍,从而避免了细胞自身的荧光干扰。实际检测时推荐使用的激发波长为488nm左右,发射波长为525~530nm(图3)。Fluo-3可以用在激光共聚焦显微成像或流式细胞仪中。它还有一个升级版本Fluo-4,在相同Ca2+浓度下信号更强。利用特殊的荧光染料或钙离子指示剂,将神经元中钙离子浓度的变化通过荧光强度表现出来。浙江荧光钙成像大概费用
清醒动物脑功能钙成像的微型显微镜的研究在不断实践中。细胞钙离子钙成像inscopix
霍华德休斯顿医学研究所(HHMI)ScottSternson课题组研究了影响这种源源不断的食欲的神经机制。他们通过使用Inscopix小显微镜观察小鼠脑干区域的神经元,发现贪念美食的小鼠可能是因为特殊的大脑区域对美食和奶茶比其他小鼠更加敏感。本能会驱使我们在感到饥饿和干渴的时候寻找食物,在找到食物或水时通过眼睛看、鼻子闻、嘴巴尝等方式来感受和决定要不要吃,吃到一定程度产生满足感(或是吃了还想吃的不满足感)。因此,要把大脑中汇集的关于吃喝的各类信号分清楚,并找出控制不同吃喝行为的神经环路无疑是很有挑战的任务。ScottSternson博士的研究团队在小鼠大脑中寻找饥饿和干渴神经环路共存的脑区。他们注意到,脑干的蓝斑区(locuscoeruleus)附近有一群谷氨酸能神经元(被称为periLC神经元),参与进食和饮水的行为,是饿和渴的汇聚点。为了研究这些神经细胞的功能,研究小组开发了一种技术,可以让小鼠在自由活动的同时,通过Inscopix自由活动钙成像显微镜观察记录脑干中periLC神经元的活动。这项研究的作者龚蓉博士表示,解决这个技术是此项研究的关键。细胞钙离子钙成像inscopix
上一篇: 美国双光子显微镜光子探测
下一篇: 上海无障碍钙成像销售