浙江高精度增量式编码器
高精度角度编码器光学测角法。光学测角方法历来以其极高的测量准确度受到人们的重视,光学测角法的应用也越来。越。目前,光学测角方法除众所周知的光学分度头法和多面棱体法外,常用的还有光学内反射法、激光干涉法、圆光栅法、环形激光法、光电轴角高精度角度编码器法和光电自准直仪法等。这些方法大多可以应用于小角度的非接触测量中,并达到了很高的测量精度和灵敏度。当被测角度量具棱面法线与量具棱面法线相重合的瞬间,被测角度转换成由光电自准直仪产生的光电流触发和停止脉冲所需的时间间隔,接口装置在此间隔内对环形激光脉冲进行读数。浙江高精度增量式编码器
高精度角度编码器按照被测角性质可以分为静态角度测量和动态角度测量两种。高精度角度测试技术在静态角度测试领域己经日趋成熟,各种测试理论和方法日益完善。然而,实现动态角度的高精度测量,是测角技术领域的一个难点,也因此成为国内外测角技术研究的一个热点。国内外角度测量的研究现状:机械测角法测角技术中研究较早的是机械式测角法,主要以多齿分度盘为表示,它是一种基于机。械分度定位原理的圆度分度技术。较早的多齿分度盘的雏形出现在20世纪20年代,完整的圆分度器件是由美国研制成功的,并于1960年获得该技术**,其分度为O.25”。18位光电单圈CANBUS编码器生产企业
高精度光电轴角编码器中的细分是误差的主要来源,而细分误差中莫尔条纹光电信号的正交性偏差影响比较大.采用相量校正方法对正交性偏差进行校正,实现电路简单,校正效果十分明显.以正弦信号为基准信号,而将余弦信号分解为0°和90°两个正交分量,0°分量就是产生正交性误差的原因,通过补偿掉该分量,即可基本消除正交性误差.为进一步减小细分误差,通过精密调节,使余弦信号的幅值与正弦信号严格相等,将正弦及其反相信号与余弦信号分别相量相加可得到严格正交的两个新相量,从而消除正交性误差.实验结果表明,经精密相位校正后,正交性偏差从1″降低到0.1″左右.
高精度光电轴角编码器空间适应性研究与设计:随着现代光蚀刻技术的进步,采用金属基制作光电编码盘工艺不断成熟.金属光电编码盘具有抗振性强,温度适应性好的优点.本文分析了国内外光电轴角编码器的发展现状,结合金属光栅盘的独特优势,选定了金属反射式光栅盘作为空间用光电编码器的重要部件.设计出一套结构简洁,可靠性高,实用性强,具备空间适应能力的高精度***式光电编码器实验系统,对开展空间高精度轴角测量具有重要的参考价值. 本文主要研究工作如下: (1)研究分析了基于反射式双光栅莫尔干涉条纹的测角基理,确定了空间应用光电轴角编码器系统设计的基本结构. (2)设计完成了空间温度大交变环境能够保持高回转精度的机械轴系,为进行高质量的光电信号采集提供了保障.
读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收工具表面上,该接收工具覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收工具的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转高精度角度编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转高精度角度编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”联合动作才能起作用。绝对式角度编码器供应商
浙江高精度增量式编码器
高精度角度编码器是一种测量角位移和角速度的精密传感器.随着数控系统以及现代工业控制系统对分辨率和精度的要求越来越高,*依靠原始分辨率或四倍频计数已无法满足工控系统实时反馈精度需求,需要更高的分辨率和精度的编码器位置转速等反馈信号.提高编码器分辨率的方法有硬件和软件两种方法,由于硬件方法对工艺设计等要求非常高,课题采用了软件方法对编码器信号进行电子学细分,以提升编码器信号的分辨率和精度.为了提高编码器位置信息的分辨率和精度,以获取更精确的电机位置,速度等信息,文中主要设计了基于改进坐标旋转数字计算(CORDIC)算法的编码器信号处理系统.首先通过信号调理电路对编码器信号进行差分放大和整形滤波等处理,然后四倍频计数得到粗码信息,接着采用基于改进CORDIC算法的电子学细分方法获得精插补信息,将粗码和精码信息整合,得到高的分辨率和高精度的电机角位置信息.浙江高精度增量式编码器