Mitsubishi三菱IGBT模块报价

时间:2023年11月18日 来源:

    2)IGBT模块的散热器应根据使用条件和环境及IGBT模块参数进行匹配选择,以保证GBT模块工作时对散热器的要求。为了减少接触热阻,推荐在散热器与IGBT模块之间涂上一层很薄的导热硅脂。3)IGBT模块安装到散热片上时,要先在模块的反面涂上散热绝缘混合剂(导热膏),再用推荐的夹紧力距充分旋紧。另外,散热片上安装螺丝的位置之间的平坦度应控制在100μm以下,表面粗糙度应控制在10μm以下。散热器表面如有凹陷,会导致接触热阻(Rth(c—f)的增加。另外,散热器表面的平面度在上述范围以外时,IGBT模块安装时(夹紧时)会给IGBT模块内部的芯片与位于金属基板间的绝缘基板增加应力,有可能产生绝缘破坏。4)IGBT模块底板为铜板的模块,在散热器与IGBT模块均匀受力后,从IGBT模块边缘可看出有少许导热硅脂挤出为佳。IGBT模块底板为DBC基板的模块,散热器表面必须平整、光洁,采用丝网印刷或圆滚滚动的方法涂敷一薄层导热硅脂后,使两者均匀压接。IGBT模块直接固定在散热器上时,每个螺钉需按说明书中给出的力矩旋紧,螺钉一定要受力均匀,力矩不足导致热阻增加或运动中出现螺钉松动。两点安装紧固螺丝时,一个和第二个依次紧固额定力矩的1/3,然后反复多次使其达到额定力矩。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N-沟道MOSFET,所以具有高输入阻抗特性。Mitsubishi三菱IGBT模块报价

Mitsubishi三菱IGBT模块

    TA=125°C图7其他公司的IGBT的低端IGBT开关电压和dV/dt感生电流的18A峰值图8IRGP30B120KD-EIGBT的低端IGBT开关电压和dV/dt感生电流的dV/dt感生电流的减小清楚说明单正向栅驱动设计的优胜之处。但在这个测试中,Co-Pack二极管电流的影响并没有完全计算在内。为了只显示出IGBT对整体电流的影响,我们只利用相同的分立式反并联二极管再重复测试,如图9中的Ice(cntrl)。图9利用相同的分立式Co-Pack二极管产生的dV/dt感生电流图10显示出在没有IGBT情况下,负偏置栅驱动器IGBT的I电流。图11为IRGP30B120KD-E单正向栅驱动器的I电流。两种情况下的电流都很低,分别为1A和。图10其他公司的IGBT的Co-Pack二极管内的低端IGBT的VCE和dV/dt感生电流1A峰值图11IRG30B120KD-E的Co-Pack二极管内的低端IGBT的VCE和dV/dt感生电流如果从整体IGBT/二极管电流中减去图10和图11的二极管电流,结果是I(负偏置栅驱动IGBT)=18-1=17AI(IRGP30B120KD-E)==可见总的减小为17:=21:1在相同的测试条件下,当栅电压是在0V或单正向栅驱动情况下,IRGP30B120KD的电路性能显示dV/dt感生开通电流减小比例为21:1。如果IGBT采用这种方式驱动,电流很小,对功耗的影响几乎可以忽略。Mitsubishi三菱IGBT模块报价正式商用的IGBT器件的电压和电流容量还很有限,远远不能满足电力电子应用技术发展的需求。

Mitsubishi三菱IGBT模块报价,Mitsubishi三菱IGBT模块

    但在中MOSFET及IGBT主流器件市场上,90%主要依赖进口,基本被国外欧美、日本企业垄断。国外企业如英飞凌、ABB、三菱等厂商研发的IGBT器件产品规格涵盖电压600V-6500V,电流2A-3600A,已形成完善的IGBT产品系列。英飞凌、三菱、ABB在1700V以上电压等级的工业IGBT领域占优势;在3300V以上电压等级的高压IGBT技术领域几乎处于垄断地位。在大功率沟槽技术方面,英飞凌与三菱公司处于国际水平。西门康、仙童等在1700V及以下电压等级的消费IGBT领域处于优势地位。尽管我国拥有大的功率半导体市场,但是目前国内功率半导体产品的研发与国际大公司相比还存在很大差距,特别是IGBT等器件差距更加明显。技术均掌握在发达国家企业手中,IGBT技术集成度高的特点又导致了较高的市场集中度。跟国内厂商相比,英飞凌、三菱和富士电机等国际厂商占有的市场优势。形成这种局面的原因主要是:1、国际厂商起步早,研发投入大,形成了较高的壁垒。2、国外制造业水平比国内要高很多,一定程度上支撑了国际厂商的技术优势。中国功率半导体产业的发展必须改变目前技术处于劣势的局面,特别是要在产业链上游层面取得突破,改变目前功率器件领域封装强于芯片的现状。总的来说。

    脉冲的幅值与栅驱动电路阻抗和dV/dt的实际数值有直接关系。IGBT本身的设计对减小C和C的比例非常重要,它可因此减小dV/dt感生电压幅值。如果dV/dt感生电压峰值超过IGBT的阀值,Q1产生集电极电流并产生很大的损耗,因为此时集电极到发射极的电压很高。为了减小dV/dt感生电流和防止器件开通,可采取以下措施:关断时采用栅极负偏置,可防止电压峰值超过V,但问题是驱动电路会更复杂。减小IGBT的CGC寄生电容和多晶硅电阻Rg’。减小本征JFET的影响图3给出了为反向偏置关断而设计的典型IGBT电容曲线。CRES曲线(及其他曲线)表明一个特性,电容一直保持在较高水平,直到V接近15V,然后才下降到较低值。如果减小或消除这种“高原”(plateau)特性,C的实际值就可以进一步减小。这种现象是由IGBT内部的本征JFET引起的。如果JFET的影响可小化,C和C可随着VCE的提高而很快下降。这可能减小实际的CRES,即减小dV/dt感生开通对IGBT的影响。图3需负偏置关断的典型IGBT的寄生电容与V的关系。IRGP30B120KD-E是一个备较小C和经改良JFET的典型IGBT。这是一个1200V,30ANPTIGBT。它是一个Co-Pack器件,与一个反并联超快软恢复二极管共同配置于TO-247封装。设计人员可减小多晶体栅极宽度。IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。

Mitsubishi三菱IGBT模块报价,Mitsubishi三菱IGBT模块

    附图说明图1为本发明结构示意图;图2为本发明限压电路结构示意图。图中:100限压电路、110一齐纳二极管、120第二齐纳二极管、200控制电路、300限流电路。具体实施方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明提供一种igbt驱动电路,将分立器件实现的限压电路集成在芯片中,节省了面积,降低了成本,将限压电路与igbt的驱动电路结合在一个功能块里进一步节省了面积和成本,同时借助igbt的驱动电路中的电阻限制了限压支路的电流,降低了功耗,保护了驱动芯片的安全,请参阅图1,包括限压电路100、控制电路200和限流电路300;请参阅图1-2,限压电路100包括:一齐纳二极管110;第二齐纳二极管120与一齐纳二极管110串联,两个齐纳二极管的选择由驱动输出限压的大小决定;请再次参阅图1,控制电路200包括限压电路控制输入lp、电阻r2、下拉电阻r3和控制管n3,限压电路控制输入lp与电阻r2串联,电阻r2与控制管n3相串联。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。Mitsubishi三菱IGBT模块报价

反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断。Mitsubishi三菱IGBT模块报价

    步骤十一、在所述集电区的底部表面形成由背面金属层组成的金属集电极。通过形成于所述栅极结构两侧的具有沟槽式结构的所述第二屏蔽电极结构降低igbt器件的沟槽的步进,从而降低igbt器件的输入电容、输出电容和逆导电容,提高器件的开关速度;通过将所述一屏蔽多晶硅和所述第二屏蔽多晶硅和所述金属源极短接提高器件的短路电流能力;通过所述电荷存储层减少器件的饱和压降。进一步的改进是,所述半导体衬底为硅衬底。在所述硅衬底表面形成有硅外延层,所述漂移区直接由一导电类型轻掺杂的所述硅外延层组成,所述阱区形成于所述漂移区表面的所述硅外延层中。进一步的改进是,令各所述第二屏蔽多晶硅顶部对应的接触孔为屏蔽接触孔。在各所述单元结构中,所述源极接触孔和邻近的一个所述屏蔽接触孔合并成一个接触孔,邻近的所述屏蔽接触孔外侧的所述屏蔽接触孔呈结构。或者,在各所述单元结构中,所述源极接触孔和各所述屏蔽接触孔连接成一个整体结构。进一步的改进是,一个所述单元结构中包括5个所述沟槽,在所述栅极结构的每一侧包括二个所述第二屏蔽电极结构。进一步的改进是,所述沟槽的步进为1微米~3微米。进一步的改进是,步骤十中。Mitsubishi三菱IGBT模块报价

信息来源于互联网 本站不为信息真实性负责