南京单声道气体超声波流量计原理

时间:2024年07月27日 来源:

超声波流量计原理是什么?超声波流量计是一种工业仪表,是基于超声波在流动介质种传播,通过超声波在介质种传播的速度等于被测介质的平均流速和超声波本身的几何原理来计算流速,设计得到的。超声波流量计显示的结果可以用来反映流量计的大小,其计量原理也不算复杂。虽然说超声波流量计是在70年代才开始出现,但是由于不用和测量介质直接接触,被制造成非接触式的流量计,可以同超声波水位计共同工作进行开口流量的测量,对流体不产生干扰和阻力,非常受广大用户欢迎。特别是近几年,超声波流量计发展更是快速,已经有非常多类型的超声波流量计产生,各个行业中均可见到超声波流量计的出现。气体超声波流量计仪表刻度上限的选择,选小了,易过载。南京单声道气体超声波流量计原理

南京单声道气体超声波流量计原理,气体超声波流量计

气体超声波流量计是一种利用超声学原理工作的新型流量仪表,气体超声波流量计主要由超声波换能器组、信号处理电路和积算系统三个部分组成。超声波发射换能器发射超声波束穿过被测流体,超声波接收换能器把接收到的信号经过放大、滤波处理后转换为电信号,供积算系统积算,然后得出气体流量。气体超声波流量计是一种利用超声学原理工作的新型流量仪表,气体超声波流量计主要由超声波换能器组、信号处理电路和积算系统三个部分组成。超声波发射换能器发射超声波束穿过被测流体,超声波接收换能器把接收到的信号经过放大、滤波处理后转换为电信号,供积算系统积算,然后得出气体流量。无锡外夹式气体超声波流量计代理商气体超声波流量计有单声道和双声道两种。

南京单声道气体超声波流量计原理,气体超声波流量计

气体超声波流量计的结构主要取决于以下几个方面:(1)声波探头的设置方式。外置式或内置接触式,气体超声流量计一般采用将接收和发射换能器插入管内至内壁边缘。(2)声波的接收方式。直射式:直接接收发射探头的声波。反射式:接收经管壁反射以后的声波。即接收换能器不是直接接收发射换能器发出的声波,而是接收经管壁一次反射或再次反射回的声波。(3)声道的设置。单声道和多声道。不论是单声道还是多声道气体超声波流量计,其声波的发送与接收原理是一样的。不同的是在不同声程上所测的线速度对管道截面的流速的呈现不同。

气体超声波流量计的安装要求已在产品说明书中写明,气体超声波流量计测量的是气体流速,对流量计本体与上下游直管段安装的同心度要求很高,因此要求施工单位在安装时一定要严格执行安装规定,以达到要求的同心度。气体超声波流量计在站场中的安装位置不同于孔板流量计。使用孔板流量计时,不管是先调压后计量,还是先计量后调压,孔板流量计和调压器大都安装在同一空间,即在两个汇管之间同时安装孔板流量计和调压器。若选用气体超声波流量计,则这一安装位置将对气体超声波流量计的计量精度产生严重影响,因为气体超声波流量计对噪音很敏感,与调压器安装在同一空间,调压器产生的噪音将会使气体超声波流量计的计量失效。所以,若选用气体超声波流量计,工艺设备布置时应将其单独安装在两汇管之间的管路上,若场地狭小,需与调压器一起安装在两汇管之间的管路上时,应在流量计和调压器之间加设减噪器或减噪管。气体超声波流量计在选型时应综合考虑流体的理化特性。

南京单声道气体超声波流量计原理,气体超声波流量计

提高气体超声波流量计计量精度有效措施:重视对设备的监测,气体超声波计量在设计之初都设置了自诊断系统,能够利用计算机对数据进行深入分析和判断,帮助工作人员了解和掌握设备运行实际情况。因此在具体运行过程中,可以对设备进行定期检查,如果发现实际测得声速与计算声速超过0.2%,应采取相应措施,对设备进行调整,以避免计量精度低带来的不便。另外,还可以观察效率因子,如果出现突变或者高频率大幅度正负跳变时,证明流量计运行已经存在不稳定的情况,且设备在运行过程中,其电压增益值数字趋于稳定化,且增加幅度不定,一旦数值出现突增情况,表示信号接收强度开始减弱,需要对设备进行调整和优化,以获得较为准确的计量精度。气体超声波流量计的选择要充分考虑工艺提供的表条件。西安不锈钢气体超声波流量计价格

气体超声波流量计感应器被组装在流水往下的管路上,该端管路管中没满管。南京单声道气体超声波流量计原理

气体超声波流量计工作原理,在测量管内安装一组超声波传感器,同时测量彼此间的声波到达时间。比如沿顺风方向投球时会比顶风方向投的球先到达对方处。同样,沿气体流动方向发出的声波会比反方向发出的声波先到达对方超声波传感器处,将这个时间差值换算成流量。气体超声波流量计的特点:超大量程比1:400,可用于管道泄漏感知。内置电池驱动,可使用10年。无转动部件无需维护,长时间使用精度不变。累计脉冲、通讯接口,可用于远传与预付费。内置温度、压力传感器,工况、标况均可计量。表头任意角度旋转,方便阅读使用。南京单声道气体超声波流量计原理

信息来源于互联网 本站不为信息真实性负责