南京体成分核磁共振原理
AccuFat-1050活鼠体脂分析仪: 1) 以实验室小鼠为研究模型已成为研究肥胖及糖尿病有效途径。 2) 传统方法弊端:破坏性不可逆、同一模型数据点单一、一致性和有效性差; 3) 解决传统分析方法的弊端:无需处死实验小鼠。即可完成测试要求; 4) 监测活鼠小鼠体重、脂肪、瘦肉、水分等含量信息。研究相关药物、饮食、基因变化的影响。 活鼠体脂分析仪检测原理: 1) 样品进入检测区域。样品中中氢原子核的磁矩将沿着静磁场方向排列并形成宏观磁矩; 2) 施加特定频率激发脉冲。宏观磁矩定向偏转; 3) 脉冲结束。宏观磁矩定向恢复并产生NMR信号; 4) 样品中不同组分中氢原子的含量和所处分子环境不同。磁共振信号强度与弛豫时间不同。因此能区分样本中不同组分。核磁共振FID 信号的实部或幅值包括时域信号的实部和幅值以及频域信号的实部或幅值。南京体成分核磁共振原理
小型核磁共振是核磁共振技术的一种独特实现形式,近年来凭借便捷、绿色和准确的优势,在工业、医学、农业、食品、材料等研究领域涌现出大量新方法、新应用。小型核磁共振精华在于一个“小”字,它赋予核磁共振技术众多新特性和新生命力。 成本经济化:核磁共振硬件的小型化直接降低了制造成本,是实现规模化应用的第二大优势。小型核磁共振通常采用成本降低的永磁体作构建主磁场,硬件本身降低的同时,维护、屏蔽和场地成本也极大降低。随着经济性的提升,科研机构逐步流行配置小型核磁共振仪器开展基础教学和科学研究的选项。湖北小核磁共振弛豫时间低场核磁共振具有测试速度快、灵敏度高、无损、绿色等优点,广泛应用在种子筛选、石油勘探、生命科学领域。
核磁共振(Nuclear Magnetic Resonance, NMR)是现代物理学的重要发现之一,是上世纪中叶发现的低电磁波(无线电波)与物质相互作用的一种基本物理现象。1945年发现核磁共振(NMR)现象的美国科学家珀塞尔(Purcell)和布洛赫(Bloch)在1952年获得诺贝尔物理学奖。近60年,核磁共振(NMR)技术得到迅速发展,核磁共振(NMR)技术已广阔应用于工业、农业、化学、生物和医学等领域。核磁共振证明了核自旋的存在,为量子力学的基本原理提供了直接验证,并初次实现了能级的反转,这些为激光的发生和发展奠定了坚实的基础。使现代核磁共振(NMR)从一维走向二维和三维,使其更加完善并得到更加广阔的应用。
核磁共振的前提和基础是原子核的磁性,简称核磁性,现代科学的发展已经揭示,任何物质都具有磁性,只是有的物质磁性强,有的物质磁性弱。原子核的磁性是非常微弱的,它只有原子、分子和宏观物质磁性的千分之一左右或者更低,这是因为原子、分子和宏观物质的磁性主要来自组成这些物质的电子的磁性,由于电子的质量远比原子核的质量小,约为原子核质量的千分之一或更低,而这些微观粒子的表征其磁性的磁矩是同其质量成反比的,微观粒子的质量越大,其磁矩就越小。所以在一般讨论物质的磁性时,只讨论物质的电子磁性,而常常忽略其微弱的核磁性。但是在一些特殊情况下,不但不能忽略这微弱的核磁性,而且核磁性还起着十分重要的作用。AccuFat-1050活鼠体脂分析仪是一款测量小鼠体脂的分析仪器,基于低场时域磁共振技术设计制造。
由于核磁共振的检测是非接触式的。而且没有电离辐射。对样品和操作人员来说都是非常安全的。因此低场核磁共振弛豫分析技术的应用范围非常广阔。可通过建立样品的弛豫信号强度与样品量化指标的关系来定量分析未知样品的指标。该方法主要根据样品中氢原子核的数量越多其弛豫信号就越强以及不同物质组分的弛豫时间不同这一原理。通过合理的设计脉冲序列能够实现样品中物质组分的定量分析。例如油脂中固态脂肪含量的检测;木材中水分含量的定量分析;以及活鼠小鼠身体组分的检测等。 低场核磁共振弛豫分析仪软件用在仪器的微处理器上的下位机部分,实现硬件相关的重要功能。天津核磁共振原理
核磁共振弛豫分析技术可获得物质中与分子动力学特性相关的弛豫信号,实现物体中物质的灵敏鉴别与定量分析。南京体成分核磁共振原理
电子控制系统是低场核磁共振弛豫分析仪的重要部件。其主要作用是产生和精确控制射频脉冲、数字化核磁共振信号以及实现与计算机的通信。商业化的电子控制系统经过精心设计和优化。具有优良的稳定性和可靠性。但其功能往往会受到限制。无法满足功能不断拓展的核磁共振应用的需求。为此许多国内外学者都设计并制作了自己的核磁共振电子控制系统或者电子控制系统中的某一个模块。如脉冲的频率源模块、信号接收模块以及用于控制脉冲时序的脉冲编辑模块。相比于商业化的产品。自主设计的电子控制系统更加灵活鼠积也更小。在便携和微型核磁共振仪器中有着明显的优势。南京体成分核磁共振原理