深圳克隆纺锤体Oosight Meta

时间:2024年11月04日 来源:

纺锤体,顾名思义,其形状类似于纺织用的纺锤,是在细胞分裂前初期到末期形成的一种特殊细胞器。它的主要元件包括微管、附着微管的动力分子分子马达,以及一系列复杂的超分子结构。微管是纺锤体的基础骨架,由αβ-微管蛋白二聚体组成,这些微管相互交错,形成纺锤状结构,将染色体紧密地联系在一起。在动物细胞中,纺锤体的形成和组装通常由中心体引导和控制。中心体是一个位于细胞质中的复合体,由两个中心粒嵌套在被称为pericentriolarmaterial(PCM)的区域内组成。PCM富含微管相关蛋白和其他蛋白质,如谷氨酸脱羧酶等微管主要蛋白,这些蛋白质共同协作,确保纺锤体的正确组装和稳定。相比之下,高等植物细胞的纺锤体并不包含中心体,而是由细胞极板附近的微管组织形成。纺锤体微管的动态变化是细胞对外界刺激响应的一部分。深圳克隆纺锤体Oosight Meta

深圳克隆纺锤体Oosight Meta,纺锤体

多极纺锤

      在有丝分裂时纺锤体一般有二个极。但是在多精入卵的卵细胞、肿瘤细胞、培养的HeLa细胞、杂种细胞等,随着条件不同可形成有3、4个或者更多个极的纺锤体。当存在多极纺锤体时,染色体的后期分配便不规则,可形成几个小核。用低浓度的秋水仙碱等药物处理也能诱导出同样的变化。木贼等特殊的植物体或胚乳细胞,往往在分裂初期形成多极纺锤体,及至分裂中期多数可恢复为二个极。

      长期以来,科学家认为在哺乳动物胚胎的***次细胞分裂过程中,只有一个纺锤体负责将胚胎染色体分配到两个细胞中。但欧洲研究人员利用小鼠开展的**近实验观察发现,这个过程中实际上有两个纺锤体,分别负责来自父亲和母亲的染色体[2]。

      双纺锤体的形成可能部分解释了为什么哺乳动物在早期发育阶段(胚胎*初的几次细胞分裂中)会有非常高的错误率。如果纺锤体的两极没有对齐和融合,那么,受精卵的遗传物质可能会被拉向3个或4个方向,而不是2个。而这种错误会导致拥有多个细胞核的细胞产生,从而终止胚胎发育。双纺锤体理论的提出提供了一种先前未知的机制。接下来需要探讨的是双纺锤体是否在人类中也发挥相同的作用。因为,这将为研究如何改善人类不育***提供非常有价值的信息[3]。 北京ICSI纺锤体玻璃底培养皿纺锤体在减数分裂中也发挥重要作用,确保生殖细胞染色体正确分离。

深圳克隆纺锤体Oosight Meta,纺锤体

胞质膜

      在动物细胞的细胞分裂结束时,母细胞在一个被称为“胞质分裂”的过程中分裂成两个子细胞和分区隔离的染色体。有丝分裂纺锤体控制胞质膜上的“胞质分裂”事件,但连接这两个宏观结构的机制一直不清楚。Mark Petronczki及其同事提供了一个结构和功能分析结果,他们发现**纺锤体蛋白(纺锤体中间区域和中间体中的一个蛋白复合物)是有丝分裂纺锤体与胞质膜间所缺失的联系环节,这个联系环节确保“胞质分裂”过程的***结果。本文作者还发现,**纺锤体蛋白的MgcRac***亚单元中的一个区域为一个“系绳”,它连接到胞质膜中的磷酸肌醇脂质上。 [4]

在生殖医学与辅助生殖技术的快速发展中,卵母细胞的冷冻保存技术显得尤为重要。然而,卵母细胞,尤其是其内部的纺锤体结构,对低温环境极为敏感,冷冻过程中的损伤往往影响解冻后卵母细胞的存活率及发育潜能。偏光成像技术,特别是Polscope偏振光显微成像系统,结合了液晶可变减速器、电子成像及数码成像技术,能够捕捉到具有双折性特征的细胞结构,如纺锤体。纺锤体由微管等高分子物质有序排列而成,这些物质能够使偏振光发生折射现象,从而被检偏器捕捉并通过偏振光显微镜观察。这一技术无需对细胞进行固定和染色,能够动态评估卵母细胞的质量与纺锤体的相关性,为卵母细胞冷冻保存的研究提供了新的手段。在有丝分裂中,纺锤体形成并维持着染色体的稳定性。

深圳克隆纺锤体Oosight Meta,纺锤体

秋水仙素会使动物细胞染色体加倍吗微管蛋白按照来源可分为植物微管蛋白和动物脑蛋白。因植物微管蛋白难以制备,秋水仙碱与动物脑微管蛋白结合反应研究得要更多一些。秋水仙碱是从植物秋水仙中提纯出的一种生物碱,又名秋水仙素,构成微管的α、β微管蛋白异源二聚体是秋水仙素分子的结合靶点。当秋水仙碱与正在进行有丝分裂的细胞接触时,秋水仙碱结合到微管蛋白的特定位点,导致α微管蛋白与β微管蛋白二聚体结构变形,从而阻断微管蛋白组装成微管,但并不影响微管蛋白的解聚,所以纺锤体会迅速消失。

秋水仙碱的浓度和作用时间对动、植物细胞染色体加倍的影响是关键。有研究结果表明,在花粉母细胞减数分裂细线期与粗线期进行美洲黑杨2n花粉的诱导效果比较好,总体上在减数分裂粗线期进行诱导得到的2n花粉**多,并且诱导的比较好浓度为0.5%。刘爱生等在利用人类外周血淋巴细胞进行染色体G显带制作中,在阻断培养的4h内任意时间加入相应剂量的秋水仙素,能获得用于G显带的形态完好、大小适中、分散均匀、轮廓清楚的中期染色体标本相。陈长超等利用秋水仙碱处理MⅠ期卵母细胞,结果发现Ml期纺锤体发生解聚,染色体周围纺锤体微管全部消失或部分残留,染色体排列异常。 纺锤体在细胞分裂中的稳定性对于细胞存活至关重要。香港MII期纺锤体改善分级

纺锤体在细胞分裂后期通过收缩力推动染色体分离。深圳克隆纺锤体Oosight Meta

构成纺锤体的是纺锤丝还是星射线

人教版《生物·必修1·分子与细胞》第6章在讲述有丝分裂时,关于动物细胞和植物细胞纺锤体形成的区别是这样描述的:植物细胞是从细胞的两极发出纺锤丝,形成一个梭形的纺锤体。而动物细胞是在两极的中心粒周围发出大量的星射线,两组中心粒之间的星射线形成了纺锤体。而在《生物·必修2·遗传与进化》第2章以哺乳动物精子形成过程为例讲述减数分裂过程时,又用了“纺锤丝”这一表述。同一套教材,前后表述不一致,让教师的教学和学生的学习都产生了困惑。“纺锤丝”一词的由来是因为纺锤体微管在电子显微镜下呈丝状,在浙科版教材中即为这样表述,且不论动物细胞还是植物细胞都用“纺锤丝”。不管是纺锤丝还是星射线,都是教材编写者为了学生更好地理解和学习“纺锤体微管”这一名词。 深圳克隆纺锤体Oosight Meta

信息来源于互联网 本站不为信息真实性负责