无污染氧化石墨吸附

时间:2024年06月28日 来源:

GO作为一种新型的药物载体材料,以其良好的生物相容性、较高的载药率、靶向给药等方面得到广泛的关注。GO作为递送药物的载体,它不仅可以负载小分子药物,也可以与抗体、DNA、蛋白质等大分子结合,如图7.2所示。普通的有机药物很多都含有π结构,而这些药物的水溶性都非常差,而GO具有较好的亲水性,因此可以借助分散性较好的GO基材料来解决这个问题,即将上述药物负载到GO基材料上,形成GO-药物混合物材料。这对改善难溶***物的水溶性,降低药物不良反应以及提高药物稳定性和生物利用度等方面有非常重要的研究意义。GO的掺量对于水泥复合材料的提升效果也有差异。无污染氧化石墨吸附

无污染氧化石墨吸附,氧化石墨

配体交换作用即:氧化石墨烯上原有的配位体被溶液中的金属离子所取代,并以配位键的形式生成不溶于水的配合物,**终通过简单的过滤即可从溶液中去除。Tang等47对Fe与GO(质量比为1:7.5)复合及Fe与Mn(摩尔比为3∶1)复合的氧化石墨烯/铁-锰复合材料(GO/Fe-Mn)进行了吸附研究,通过一系列的实验表明,氧化石墨烯对Hg2+的吸附机理主要是配体交换作用,其比较大吸附量达到32.9mg/g。Hg2+可在水环境中形成Hg(OH)2,与铁锰氧化物中的活性点位(如-OH)发生配体交换作用,从而将Hg(OH)2固定在氧化石墨烯/铁-锰复合材料上,达到去除水环境中Hg2+的目的。氧化石墨烯经一定功能化处理后可发挥更大的性能优势,例如大比表面积、高敏感度和高选择性等,这些特性对于氧化石墨烯作为吸附剂吸附水环境中的金属离子有着重要的作用。常规氧化石墨粉体氧化石墨仍然保留石墨母体的片状结构,但是两层间的间距(约0.7nm)大约是石墨中层间距的两倍。

无污染氧化石墨吸附,氧化石墨

尽管氧化石墨烯自身可以发射荧光,但有趣的是它也可以淬灭荧光。这两种看似相互矛盾的性质集于一身,正是由于氧化石墨烯化学成分的多样性、原子和电子层面的复杂结构造成的。众所周知,石墨形态的碳材料可以淬灭处于其表面的染料分子的荧光,同样的,在GO和RGO中存在的SP2区域可以淬灭临近一些物质的的荧光,如染料分子、共轭聚合物、量子点等,而GO的荧光淬灭效率在还原后还有进一步的提升。有很多文章定量分析了GO和RGO的荧光淬灭效率,研究表明,荧光淬灭特性来自于GO、RGO与辐射发生体之间的荧光共振能量转移或者非辐射偶极-偶极耦合。

光电器件是在微电子技术基础上发展起来的一种实现光与电之间相互转换的器件,其**是各种光电材料,即能够实现光电信息的接收、传输、转换、监测、存储、调制、处理和显示等功能的材料。光电传感器件指的是能够对某种特征量进行感知或探测的光电器件,狭义上*指可将特征光信号转换为电信号进行探测的器件,广义而言,任何可将被测对象的特征转换为相应光信号的变化、并将光信号转换为电信号进行检测、探测的器件都可称之为光电传感器。氧化石墨正式名称为石墨氧化物或被称为石墨酸,是一种由物质量之比不定的碳、氢、氧元素构成的化合物。

无污染氧化石墨吸附,氧化石墨

氧化石墨烯表面的-OH和-COOH等官能团含有孤对电子,可作为配位体与具有空的价电子轨道的金属离子发生络合反应,生成不溶于水的络合物,从而有效去除溶液中的金属离子。Madadrang等45制得乙二胺四乙酸/氧化石墨烯复合材料(EDTA-GO),通过研究发现其对金属离子的吸附机制主要为络合反应,即氧化石墨烯的表面官能团与水中的金属离子反应形成复杂的络合物,具体过程如图8.7所示,由于形成的络合物不溶于水,可通过沉淀等作用分离去除水中的金属离子。氧化石墨能够应用在交通运输、建筑材料、能量存储与转化等领域。河北进口氧化石墨

氧化石墨烯(GO)的光学性质与石墨烯有着很大差别。无污染氧化石墨吸附

TO具有光致亲水特性,可保证高的水流速率,在没有外部流体静压的情况下,与GO/TO情况相比,通过RGO/TO杂化膜的离子渗透率可降低至0.5%,而使用同位素标记技术测量的水渗透率可保持在原来的60%,如图8.5(d-g)所示。RGO/TO杂化膜优异的脱盐性能,表明TO对GO的光致还原作用有助于离子的有效排斥,而在紫外光照射下光诱导TO的亲水转化是保留优异的水渗透性的主要原因。这种复合薄膜制备方法简单,在水净化领域具有很好的潜在应用。。无污染氧化石墨吸附

信息来源于互联网 本站不为信息真实性负责