眉山GPSGNSS接收机绘图

时间:2022年01月25日 来源:

    本发明属于卫星导航定位领域,涉及卫星定位精度的问题,主要解决卫星观测值中的对流层残余延迟量对定位精度影响的合理削弱问题。背景技术:精密单点定位(ppp)集成了标准单点定位和相对定位的技术优点,实现了厘米级甚至毫米级的定位精度,已被广泛应用于诸多领域。由于卫星的解算精度与随机模型具有严密的数学关系,对观测量确定合理的随机模型,可有效降低各种系统残余误差的影响,提高定位的精度。常用的随机模型主要有等权模型、高度角定权模型、信噪比定权模型、验后方差模型等。等权模型认为同类观测值(载波或伪距)的方差是相等的,并且彼此间相互,但是由于卫星观测量受误差源的影响,不同卫星的观测值精度是不同的,当定位环境及信号强度变化较大时,不能满足精密加权定位的要求,因此等权模型不符合实际。验后方差模型根据经验模型给定观测值方差,通过平差后得到的一些信息,来估计各类观测值的方差和协方差,虽然验后方差模型能明显提高解算精度,但是加剧了数据处理的计算量,尤其在实时数据处理中几乎不可能,不利于卫星定位的实时解算。目前,ppp中常用的定权模型多基于卫星高度角和信噪比的随机模型。基于卫星高度角的随机模型认为卫星高度角越大。当今,GNSS系统不仅是**和经济的基础设施;眉山GPSGNSS接收机绘图

    计算卫星信号在对流层中的传播距离作为本发明进一步改进,在步骤三中,天顶映射函数的具体取值为:之前作为本发明进一步改进,在步骤四中,所述的确定对流层延迟量包括以下步骤:步骤,获取精密单点定位中采用非差非组合模型估计的天顶方向对流层湿延迟δw;步骤,根据天顶映射函数和天顶方向对流层湿延迟计算对流层残余延迟量δδ=×k×δw(6)。作为本发明进一步改进,在步骤五中,所述的根据对流层残余延迟确定卫星的方差为式中:为参考方差,对于伪距而言对于载波而言本发明提供一种顾及对流层残余延迟的gnss随机模型建立方法,本发明基于卫星信号在对流层中的传播距离越小则对流层残余延迟越小,相应卫星观测值的方差也越小这一思想,建立了一种顾及对流层残余延迟的gnss随机模型。一方面,将对流层残余延迟纳入到随机模型中,减小了未建模误差对精密单点定位结果的影响,合理地解决了现有的随机模型难以反映未建模误差特性的问题。另一方面,综合了测量中的偶然误差和系统误差,有效提高了精密单点定位的精度和可靠性。附图说明图1本发明工作流程图。崇州土建GNSS接收机维修如何在可接受的成本内选择合适的GNSS技术,将成为摆在终端制造商面前的难题。

    通过中频信号的基本时、频域特征无法区分欺骗式干扰与真实卫星信号。若级模块识别结果为无干扰或者存在欺骗干扰时,进一步对数字中频信号进行捕获,利用捕获后的二维搜索矩阵提取相关峰特征,再送入第二级模块进行欺骗干扰检测。当两级模块终识别结果为无干扰时,可认为接收信号为真实卫星信号,否则可根据识别出的干扰类型,采取相对应的干扰处理手段。两级模块均采用三层全连接bp神经网络:输入节点数分别为9和11,级模块使用9个特征参数,第二级模块使用11个特征参数;隐含层节点数分别为12和10;输出节点数分别为8和2,对应于各级分类标签数。两级网络训练网络的示意图如图3所示。级识别模块首先,对数字中频信号进行功率归一化:再对归一化后信号进行傅里叶变换,得到频谱x(k),以下公式若不进行特别说明,其中k的取值范围均为1~n。再进行频域归一化,可得归一化频谱xu(k)=x(k)/max[x(k)](3)进一步得到功率谱p(k)=[x(k)]2。对其作归一化,可得归一化后的功率谱为其中表示p(k)的均值。为了对各类压制式干扰进行精确识别,级识别模块采用的特征参数如表2所示:表2级网络使用的特征参数在x3的计算中,pp(k)表示对p(k)中的冲激部分提取的结果,即用归一化后的功率pu。

    接收机接收到n颗可见卫星发出的导航信号,根据接收到的gnss信号模型和干扰源,采用基于bp神经网络的两级识别方案,通过级识别模块对a/d转换后的数字中频信号提取时域和频域特征,送入bp神经网络进行压制式干扰检测和分类;若级识别模块识别结果为无干扰或者存在欺骗干扰时,再对数字中频信号进行捕获,利用捕获后的二维搜索矩阵提取相关峰特征,送入第二级识别模块进行欺骗干扰检测;当两级识别模块终识别结果为无干扰时,判定接收信号为真实卫星信号,当识别出干扰类型后,采取相对应的干扰处理手段。具体的,利用信号频谱幅值的大值与次大值之比、单频能量聚集度、平均频谱平坦系数、时域峰度、功率谱偏度、功率谱峰度频谱方差与均值平方之比、归一化频谱峰均比和归一化频谱之3db带宽,训练级识别模块的bp神经网络,输出标签分为8类。进一步的,信号频谱幅值的大值与次大值之比为:x1=|x(k)|1stmax/|x(k)|2ndmax单频能量聚集度为:平均频谱平坦系数为:时域峰度为:x4=e(|x(n)-μt|4)/σt4功率谱偏度为:x5=e[x(ω)-μp]3/σp3功率谱峰度为:x6=e[x(ω)-μp]4/σp4频谱方差与均值平方之比为:x7=σf2/μf2归一化频谱峰均比为:x8=max{xu(k)}/e[xu。北斗/GNSS接收机主要接收机天线单元、主机单元和电源三部分组成。

    将发热元件2产生的热量带到gnss接收机的外侧的放热结构32进行散热,安装于导流管道内的泵送机构35控制导热介质34的循环速度,从而实现gnss接收机的强制散热功能,不提高散热效率,还能够避免因接收机内部过热造成接收机零部件损坏的问题。为了保证gnss接收机能够长期正常工作,防止因热量过多而出现故障的情况发生,如图2和图3所示,散热装置3还包括安装于每个发热元件2上的温度检测单元36,温度检测单元36可以为各种测量温度的检测单元,如:微型温度传感器;温度检测单元36与控制器信号连接;温度检测单元36用于测量发热元件2的温度,并将检测到的温度信号发送给控制器;控制器根据温度信号控制泵送机构35工作。由于上述散热装置3还包括安装于发热元件2的温度检测单元36,通过温度检测单元36能够实时检测每个发热元件2的实时温度,在方便监控发热元件2的工作温度的同时,还能及时地采取冷却措施;可以在控制器内预先设定有各个发热元件2的工作温度限值,当温度检测单元36检测到发热元件2的温度等于或大于该工作温度限值时,控制器便控制与该发热元件2对应的导热管路33中的泵送机构35开启或加大导热介质34的循环流量,从而对该发热元件2进行降温。为用户提供全天候的3维坐标和速度以及时间信息的空基无线电导航定位系统。崇州建筑GNSS接收机批发商

应用配件包括4G物联网卡(选配)、电台棒状天线(选配)、多功能数据线等。眉山GPSGNSS接收机绘图

    本申请涉及工程测量技术领域,具体地,涉及一种gnss接收机。背景技术:全球卫星导航系统(theglobalnavigationsatellitesystem,gnss),也称为全球卫星导航系统,是能在地球表面或近地空间的任何地点为用户提供全天候的三维坐标和速度以及时间信息的空基无线电导航定位系统。在外业勘测过程中,gnss接收机仪器经常需要在野外进行长时间使用,且接收机一般在高频状态下使用,在高温环境中工作的接收机内部极易堆积大量热量,造成接收机局部过热,容易对电路及各个精密部件产生破坏,且高温下接收机电池及零部件寿命会较大程度上缩短,严重时可能引发电子元器件故障。现有接收机的散热系统均采用风扇进行散热,在接收机内部温度达到一定阈值时,风扇开始工作,通过风扇促进空气流动,将接收机内部热量导流至外部,利用机身外壳上的散热孔进行与外界的热量交换。此散热方式原理简单,造价较低,但是因热传导效率低、接收机内部结构复杂而空气流动性差,无法有效改善接收机内部热量堆积的问题。技术实现要素:本申请实施例中提供了一种gnss接收机,该gnss接收机通过散热装置对发热元件进行强制散热,并通过导热管路将发热元件产生的热量导到接收机的壳体外侧,提高了散热效率。眉山GPSGNSS接收机绘图

信息来源于互联网 本站不为信息真实性负责