南京孔隙率检测仪品牌企业
把每个残差的平方后加起来称为残差平方和,它表示随机误差的效应。NCM111和NCA在压实过程中,极片孔隙率变化规律相似,在相同载荷作用下,NCM111的孔隙率更低些。而两种不同粒径分布的NCA混合颗粒,小颗粒在大颗粒之间填充,压实密度更低。NCM111、NCM622、NCM811三种材料比较,NCM811极片随着载荷增加,孔隙率开始迅速降低,这是由于它们颗粒直径更大,初始孔隙率也更大些。图3不同活性物质孔隙率与线载荷关系:实验值以及公式(4)的拟合线,χ2表示残差平方和。这五种材料压实数据经过公式(4)拟合,得到压实阻抗γ如图4所示。涂层压实阻抗γC表示抵抗压实过程的阻力,其值越大极片越难压实,如果极片要压实都某一个孔隙率,γC越大说明需要的线载荷越大。从图4可见,两种NCA混合颗粒,小颗粒在大颗粒之间填充,极片压实更容易。而NCM811颗粒更大,也更容易压实。图4几种材料的压实阻抗面密度对压实阻抗γ的影响–12极片,涂层面密度从80g/m2逐渐升高到285g/m2,对应的涂层孔隙率与加载的压实线载荷关系如图5所示,数据点是实验测试值,曲线是根据公式(4)拟合得到的曲线。对于–8,极片涂层面密度低,初始的孔隙率比较高,压实过程,随着载荷增加。铝铸件汽车零件孔隙率分析仪器。南京孔隙率检测仪品牌企业
工业生产上,锂电池极片一般采用对辊机连续辊压压实,工艺过程如图1所示。图1极片辊压过程示意图极片经过压实之后,涂层孔隙率由初始值εc,0变为εc。在之前的一篇文章《锂电池极片辊压工艺基础解析》提到:锂离子电池极片的压实过程也遵循粉末冶金领域的**公式(1),这揭示了涂层密度或孔隙率与压实载荷之间的关系。(1)其中,ρc,0是涂层密度初始值,ρc是压实后涂层的密度。qL为作用在极片上的线载荷,可由式(2)计算:qL=FN/WC(2)FN为作用在极片上的轧制力,WC为极片涂层的宽度。ρc,max和γC可以通过实验数据拟合得到,分别表示某工艺条件下涂层能够达到的比较大压实密度以及涂层压实阻抗。将压实密度转化成孔隙率,**公式(1)转变为公式(3):(3)参考文献[1]依据以上压实工艺模型,考察了不同活性物质,不同面密度对极片的压实孔隙率的影响。原材料的粒径分布和形貌等参数如表1所示,所制备的极片组成和面密度等参数如表2所示。,、NCM811、NCM622、NCM111,这五种活性物质不同,浆料组成和面密度相同,单面涂布223g/m2。,涂布不同的面密度。。初始孔隙率及**小孔隙率预测理想球形不可压缩的硬质颗粒简单立方堆垛的理论孔隙率为。南京孔隙率检测仪品牌企业发动机部件的孔隙率检测手段和方法。
压实阻抗下降斜率大,而–12面密度增加,涂层初始孔隙率降低,载荷增加时压实阻抗下降斜率也更小。图5不同压实密度极片的孔隙率-线载荷关系:实验数据点和拟合曲线曲线拟合可以得到各种极片的压实阻抗,压实阻抗γ和涂层面密度MC作图,分析两者之间的关系,如图6所示。压实阻抗γ与面密度具有线性关系:γ=μ*MC,本文–12一系列实验中,μ=·m/g。随着面密度增加,涂层压实越来越困难。对于不同的活性物质,压实工艺模型的面密度影响因子μ列入表3。图6压实阻抗-面密度的线性关系表3不同的活性物质压实阻抗的面密度影响因子μ极片压实工艺模型根据以上分析,综合考虑活性物质的种类、形貌和粒度分布,以及涂层的面密度等因素,锂离子电池极片压实工艺模型为:(5)其中,p=εC,min/εC,0表示极片**小孔隙率εC,min与初始孔隙率εC,0的比值,与颗粒的种类和形貌相关,对于球形颗粒,一般p=。γ=μ*MC表示极片压实阻抗,表征极片的压实难易程度,并与涂层的面密度MC相关,不同的活性物质压实阻抗的面密度影响因子μ数值见表3。在《锂电池极片辊压机原理及工艺》一文中。
2、BET单点法比表面SBET-O3、BET多点比表面积分析仪价格:89500供货量:1000最小起订量:1有效期至:2016-11-02关键字:比表面积分析仪比表面积分比表面积仪产品简介:比表面积分析仪技术参数总体概括:3H-2000BET-A型全自动氮吸附比表面积分析仪是目前国内多项测试功能***并且完全自动化的比表面积分析仪仪器,由贝士德仪器科技(北京)有限公司研制生产.国产比表面积分析仪使用较广的为3H-2000系列比表面积分析仪,国内拥有大量客户比表面测试仪价格:89500供货量:1000最小起订量:1有效期至:2016-11-02关键字:比表面测试仪比表面测试比表面积仪产品简介:比表面测试仪技术参数总体概括:3H-2000BET-A型全自动氮吸附比表面测试仪是目前国内多项测试功能***并且完全自动化的比表面测试仪仪器,由贝士德仪器科技(北京)有限公司研制生产.国产比表面测试仪使用较广的为3H-2000系列比表面测试仪,国内拥有大量客户。德国徕卡发动机部件孔隙率检测设备。
将螺母54两个杆的端部连接,由此通过旋转该螺母54来调节活塞的长度。长度调节装置的另一个实施例可被构造成使得支撑件53可被拧动以便调节支撑件53的高度。如此,在长度调节装置54设置在该过滤罐10的外面的情况下,当需要调节活塞的长度时,活塞的长度可被容易地调节而无需拆卸过滤罐10。所述上部过滤材料固定板60安装在该过滤罐10中,并在滤网30的上侧固定到活塞52上,且与活塞52的往复运动协同工作。下部过滤材料固定板40固定在过滤罐10内的滤网30的下侧。如图4所示,上部过滤材料固定板60和下部过滤材料固定板40分别与该纤维过滤材料20的上端和下端固定连接。因此,当致动所述提升驱动器以牵引该上部过滤材料固定板60时,该纤维过滤材料形成绕滤网30外周的滤孔。同时,为了固定该纤维过滤材料20,下部过滤材料固定板40和上部过滤材料固定板60分别设置有螺旋的径向固定装置41和61,如图1所示。在该具体实施方式中,固定装置41和61的位置具有重要的技术意义。如图3所示(其示出了下部过滤材料固定板40,然而,相同的原理适用于该上部过滤材料固定板,因此将参照图3作出下面的描述)。德国徕卡航空零件汽车零件孔隙率检测。嘉定区新型孔隙率检测仪质量保证
金属零件航空部件铝铸件孔隙率分析仪器。南京孔隙率检测仪品牌企业
测量孔隙率的方法有多种,以下是一些常见的方法:称重法:原理:根据膜浸湿某种合适液体(如水)的前后重量变化,来确定该膜的孔隙体积。通过测量膜原材料密度和干膜重量来获得膜的骨架体积,从而计算出孔隙率。孔隙率计算公式:ε=V孔/V膜外观=V孔/(V孔+V膜骨架)。密度法:原理:通过测量材料的干重和饱和重(或表观密度和原材料密度)来计算孔隙率。孔隙率计算公式:孔隙率=(饱和重-干重)/饱和重×100%,或者ε=(ρ膜表观-ρ膜材料)/ρ膜表观。气体吸附法:原理:利用低温氮吸附获得孔体积,进而得到孔隙率。限制:只能测量200nm以下尺寸孔结构的孔体积,不适用于大量滤膜。压汞法:原理:利用压力将汞压入膜的各种结构孔隙中,根据注入汞的压力和体积来获得膜的孔隙体积及尺寸数据。注意:该方法更适合分析刚性材料,对于弹性材料可能因变形或“塌陷”而产生误差。电阻率法:原理:基于样品的电导率与孔隙率之间的关系,通过测量电流通过样品时的电阻变化来计算孔隙率。光学法:原理:利用磨光后的样品片材测量材料的面积孔隙率,但可能无法确保计算所有细小孔隙。渗吸法:原理:在真空环境中,多孔介质试样浸没在润湿液中,足够时间后测量浸湿的孔隙体积来计算孔隙率。南京孔隙率检测仪品牌企业
上一篇: 宁波质量金相显微镜售后
下一篇: 没有了