杭州哪些氧化石墨

时间:2024年03月01日 来源:

(1)将GO作为荧光共振能量转移的受体,构建荧光共振能量转移型氧化石墨烯生物传感器,用于检测各种生物分子。(2)可以将一些抗体键合在GO表面,构建成抗体型氧化石墨烯传感器,通常是将GO作为荧光共振能量转移或化学发光共振能量转移的受体,以此来检测抗原物质;或者利用GO比表面积较大能结合更多抗体的特点,将检测信号进行进一步放大。(3)构建多肽型氧化石墨烯传感器。因为GO是一种边缘含有亲水基团(-COOH,-OH及其他含氧基团)而基底具有高疏水性的两性物质,当多肽与GO孵育时,多肽的芳环和其他疏水性残基与GO的疏水性基底堆积,同时二者部分残基之间也会存在静电作用,这样多肽组装在GO上形成了多肽型氧化石墨烯传感器。当多肽被荧光基团标记时,二者之间发生荧光共振能量转移后,GO使荧光发生猝灭。石墨烯具有很好的电学性质,但氧化石墨本身却是绝缘体(或是半导体)。杭州哪些氧化石墨

杭州哪些氧化石墨,氧化石墨

利用化学交联和物理手段调控氧化石墨烯基膜片上的褶皱和片层间的距离是制备石墨烯基纳滤膜的主要手段。由于氧化石墨烯片层间隙距离小,Jin等24利用真空过滤法在石墨烯片层间加入单壁碳纳米管(SWCNT),氧化石墨烯片层间的距离明显增加,水通量可达到6600-7200L/(m2.h.MPa),大约是传统纳滤膜水通量的100倍,对于染料的截留率达到97.4%-98.7%。Joshi等25研究了真空抽滤GO分散液制备微米级厚度层状GO薄膜的渗透作用。通过一系列实验表明,GO膜在干燥状态下是真空压实的,但作为分子筛浸入水中后,能够阻挡所有水合半径大于0.45nm的离子,半径小于0.45nm的离子渗透速率比自由扩散高出数千倍,且这种行为是由纳米毛细管网络引起的。异常快速渗透归因于毛细管样高压作用于石墨烯毛细管内部的离子。GO薄膜的这一特性在膜分离领域具有非常重要的应用价值。新型氧化石墨产品介绍氧化石墨可以用于提高环氧树脂、聚乙烯、聚酰胺等聚合物的导热性能。

杭州哪些氧化石墨,氧化石墨

随着材料领域的扩张,人们对于材料的功能性需求更为严苛,迫切需要在交通运输、建筑材料、能量存储与转化等领域应用性质更加优良的材料出现,石墨烯以优异的声、光、热、电、力等性质成为各新型材料领域追求的目标,作为前驱体的GO以其灵活的物理化学性质、可规模化制备的特点更成为应用基础研究的热电。虽然GO具有诸多特性,但是由于范德华作用以及π-π作用等强相互作用力,使GO之间很容易在不同体系中发生团聚,其在纳米尺度上表现的优异性能随着GO片层的聚集***的降低直至消失,极大地阻碍了GO的进一步应用。

氧化石墨烯(GO)表面有羟基、羧基、环氧基、羰基等亲水性的活性基团,且片层间距较大,使得氧化石墨烯具有超大比表面积和***的离子交换能力。GO的结构与水通蛋白相类似,而蛋白质本身具有优异的离子识别功能,由此可推断氧化石墨烯在分离、过滤及仿生离子传输等领域可能具有潜在的应用价值1-3。GO经过超声可以稳定地分散在水中,再通过传统成膜方法如旋涂、滴涂和真空抽滤等处理后,GO微片可呈现肉眼可见的层状薄膜堆叠,在薄膜的层与层之间形成具有选择性的二维纳米通道。 除此之外,GO由于片层间存在较强的氢键,力学性能优异,易脱离基底而**存在。基于GO薄膜制备方法简单、成本低、高通透性和高选择性等优点,其在水净化领域具有广阔的应用空间。氧化石墨正式名称为石墨氧化物或被称为石墨酸,是一种由物质量之比不定的碳、氢、氧元素构成的化合物。

杭州哪些氧化石墨,氧化石墨

氧化石墨烯经还原处理后,对于提高其导电性、比表面等大有裨益,使得石墨烯可以应用于对于导电性、导热性等要求更高的应用中。在还原过程,含氧官能团的去除和控制过程本身也可成为石墨烯改性的一种方式,根据还原方式的不同得到的石墨烯也具有不同的特性和应用场景。例如,通过热还原方式得到的还原氧化石墨烯结构、形貌、组分可通过还原条件进行适当的调控。Dou等1人介绍了在氩气流下在1100-2000°C的温度范围内进行热处理得到的石墨烯结构和吸附性能的研究。所得到石墨烯粉体材料的表面积增加至超过起始前驱体材料四倍,对氧化石墨烯进行热还原处理提高了氧化石墨烯的热学性能,赋予了氧化石墨烯材料热管理方面的应用。同时具有良好的生物相容性,超薄的GO纳米片很容易组装成纸片或直接在基材上进行加工。杭州哪些氧化石墨

随着含氧基团的去除,氧化石墨烯(GO)在可见光波段的的光吸收率迅速上升。杭州哪些氧化石墨

GO/RGO在光纤传感领域会有越来越多的应用,其基本的原理是利用石墨烯及氧化石墨烯的淬灭特性、分子吸附特性以及对金属纳米结构的惰性保护作用等,通过吸收光纤芯层穿透的倏逝波改变光纤折射率或者基于表面等离子体共振(SPR)效应影响折射率。GO/RGO可以在光纤的侧面、端面对光进行吸收或者反射,而为了增加光与GO/RGO层的相互作用,采用了不同光纤几何弯曲形状,如直型、U型、锥型和双锥型等。有铂纳米颗粒修饰比没有铂纳米颗粒修饰的氧化石墨烯薄膜光纤传感器灵敏度高三倍,为多种气体的检测提供了一个理想的平台。杭州哪些氧化石墨

信息来源于互联网 本站不为信息真实性负责