鹤岗改性氧化石墨

时间:2024年03月01日 来源:

氧化石墨烯(GO)与石墨烯的另一个区别是在吸收紫外/可见光后会发出荧光。通常可以在可见光波段观测到两个峰值,一个在蓝光段(400-500nm),另一个在红光段(600-700nm)。关于氧化石墨烯发射荧光的机理,学界仍有争论。此外,氧化石墨烯的荧光发射会随着还原的进行逐渐变化,在轻度化学还原过程中观察到GO光致发光光谱发生红移, 这一发现与其他人观察到的发生蓝移的现象相矛盾。这从另一个方面说明了氧化石墨烯结构的复杂性和性质的多样性。将氧化石墨暴露在强脉冲光线下,例如氙气灯也能得到石墨烯。鹤岗改性氧化石墨

鹤岗改性氧化石墨,氧化石墨

GO膜在水处理中的分离机理尚存在诸多争议。一种观点认为通过尺寸筛分以及带电的目标分离物与纳米孔之间的静电排斥机理实现分离,如图8.3所示。氧化石墨烯膜的分离通道主要由两部分构成:1)氧化石墨烯分离膜中不规则褶皱结构形成的半圆柱孔道;2)氧化石墨烯分离膜片层之间的空隙。除此之外,由氧化石墨烯结构缺陷引起的纳米孔道对于水分子的传输提供了额外的通道19-22。Mi等23研究认为干态下通过真空过滤制备的氧化石墨烯片层间隙的距离约为0.3 nm。无污染氧化石墨怎么用GO制备简单、自身具有受还原程度调控的带隙,可以实现超宽谱(从可见至太赫兹波段)探测。

鹤岗改性氧化石墨,氧化石墨

氧化石墨烯(GO)的光学性质与石墨烯有着很大差别。石墨烯是零带隙半导体,在可见光范围内的光吸收系数近乎常数(~2.3%);相比之下,氧化石墨烯的光吸收系数要小一个数量级(~0.3%)[9][10]。而且,氧化石墨烯的光吸收系数是波长的函数,其吸收曲线峰值在可见光与紫外光交界附近,随着波长向近红外一端移动,吸收系数逐渐下降。对紫外光的吸收(200-320nm)会表现出明显的π-π*和n-π*跃迁,而且其强度会随着含氧基团的出现而增加[11]。氧化石墨烯(GO)的光响应对其含氧基团的数量十分敏感[12]。随着含氧基团的去除,氧化石墨烯(GO)在可见光波段的的光吸收率迅速上升,**终达到2.3%这一石墨烯吸收率的上限。

多层氧化石墨烯(GO)膜在不同pH水平下去除水中有机物质的系统性能评价和机理研究。该研究采用逐层组装法制备了PAH/GO双层膜,对典型单价离子(Na+,Cl-)和多价离子(SO42-,Mg2+)以及有机染料(亚甲蓝MB,罗丹明R-WT)和药物和个人护理品(三氯生TCS,三氯二苯脲TCC)在反渗透膜系统中通过GO膜的行为进行研究。结果发现,在pH=7时,无论其电荷、尺寸或疏水性质如何,GO膜能够高效去除多价阳离子/阴离子和有机物,但对于单价离子的去除率较低。传统的纳滤膜通常带负电,且只能去除带有负电荷的多价离子和有机物。随着pH的变化,GO膜的关键性质(例如电荷,层间距)发生***变化,导致不同的pH依赖性界面现象和分离机制,一些有机物(例如三氯二苯脲)的分子形状由于这种有机物与GO膜的碳表面的迁移性和π-π相互作用而极大地影响了它们的去除。氧化石墨可以通过用强氧化剂来处理石墨来制备。

鹤岗改性氧化石墨,氧化石墨

氧化石墨烯(GO)是一种两亲性材料,在生理条件中一般带有负电荷,通过对GO的修饰可以改变电荷的大小,甚至使其带上正电荷,如利用聚合物或树枝状大分子等聚阳离子试剂。在细胞中,GO可能会与疏水性的、带正电荷或带负电荷的物质进行相互作用,如细胞膜、蛋白质和核酸等,因此会诱导GO产生毒性。因此在本节中,我们主要探讨GO在细胞(即体外)和体内试验中产生已知的毒性效应,以及产生毒性的可能原因。石墨烯材料的结构特点主要由三个参数决定:(a)层数、(b)横向尺寸和(c)化学组成即碳氧比例)。GO表面的各种官能团使其可与生物分子直接相互作用,易于化学修饰。呼和浩特附近氧化石墨

GO的生物毒性除了有浓度依赖性,还会因GO原料的不同而呈现出毒性数据的多样性。鹤岗改性氧化石墨

氧化应激是指体内氧化与抗氧化作用失衡,倾向于氧化,导致中性粒细胞炎性浸润,蛋白酶分泌增加,产生大量氧化中间产物,即活性氧。大量的实验研究已经确认细胞经不同浓度的GO处理后,都会增加细胞中活性氧的量。而活性氧的量可以通过商业化的无色染料染色后利用流式细胞仪或荧光显微镜检测到。氧化应激是由自由基在体内产生的一种负面作用,并被认为是导致衰老和疾病的一个重要因素。氧化应激反应不仅与GO的浓度[17,18]有关,还与GO的氧化程度[19]有关。如将蠕虫分别置于10μg/ml和20μg/ml的PLL-PEG修饰的GO溶液中,GO会引起蠕虫细胞内活性氧的积累,其活性氧分别增加59.2%和75.3%。鹤岗改性氧化石墨

信息来源于互联网 本站不为信息真实性负责